×

zbMATH — the first resource for mathematics

On algorithms to obtain linear determinantal representations of smooth plane curves of higher degree. (English) Zbl 1409.14098
Summary: We give two algorithms to compute linear determinantal representations of smooth plane curves of any degree over any field. As particular examples, we explicitly give representatives of all equivalence classes of linear determinantal representations of two special quartics over the field \(\mathbb{Q}\) of rational numbers, the Klein quartic and the Fermat quartic.
Reviewer: Reviewer (Berlin)

MSC:
14Q05 Computational aspects of algebraic curves
14H50 Plane and space curves
14M12 Determinantal varieties
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] A. Beauville, Determinantal hypersurfaces, Dedicated to W. Fulton on the occasion of his 60th birthday, Michigan Math. J., 48, 39-64, (2000)
[2] I. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, 2012. · Zbl 1252.14001
[3] L. Galinat, Orlov’s equivalence and maximal Cohen–Macaulay modules over the cone of an elliptic curve, Math. Nachr., 287, 1438-1455, (2014) · Zbl 1329.14034
[4] D. Plaumann; B. Sturmfels; C. Vinzant, Quartic curves and their bitangents, J. Symbolic Comput., 46, 712-733, (2011) · Zbl 1214.14049
[5] T. Fisher; R. Newton, Computing the Cassels–Tate pairing on the 3-Selmer group of an elliptic curve, Int. J. Number Theory, 10, 1881-1907, (2014) · Zbl 1314.11042
[6] Y. Ishitsuka, A positive proportion of cubic curves over \(\Q\) admit linear determinantal representations, J. Ramanujan Math. Soc., 32, 231-257, (2017)
[7] Y. Ishitsuka; T. Ito, On the symmetric determinantal representations of the Fermat curves of prime degree, Int. J. Number Theory, 12, 955-967, (2016) · Zbl 1415.11062
[8] Y. Ishitsuka; T. Ito, The local-global principle for symmetric determinantal representations of smooth plane curves, Ramanujan J., 43, 141-162, (2017) · Zbl 1390.14086
[9] Y. Ishitsuka, An algorithm to obtain linear determinantal representations of smooth plane cubics over finite fields, JSIAM Lett., 8, 69-72, (2016) · Zbl 1409.14097
[10] A. Beauville, Variétes de Prym et Jacobiennes Intermédaires, Ann. Sci. Éc. Norm. Supér. (4), 10, 309-391, (1977) · Zbl 0368.14018
[11] P. Tzermias, Low-degree points on Hurwitz-Klein curves, Trans. Amer. Math. Soc., 356, 939-951, (2004) · Zbl 1116.14017
[12] Y. Ishitsuka, T. Ito and T. Ohshita, Explicit calculation of the mod 4 Galois representation associated with the Fermat quartic, arXiv:1804.07109 [math.NT]. · Zbl 1409.14098
[13] D. K. Faddeev, Group of divisor classes on the curve defined by the equation \(x^4 + y^4 = 1\), Dokl. Akad. Nauk SSSR, 134, 776-777, (1960) · Zbl 0100.03401
[14] Maxima, a Computer Algebra System (Version 5.41.0), http://maxima.sourceforge.net/.
[15] SageMath, the Sage Mathematics Software System (Version 8.1), The Sage Developers,, http://www.sagemath.org.
[16] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular (Version 4-1-1) — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de.
[17] J. Boehm, L. Kastner, B. Lorenz, H. Schönemann and Y. Ren, divisors.lib, A Singular 4-1-1 library for computing divisors and P-Divisors.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.