×

Generalized M-estimators for high-dimensional Tobit I models. (English) Zbl 1417.62342

Consider the design of statistical methods in case of censored data which may occur e.g. if the measurement device in physical sciences has a certain value limit. For coping with censored data, robust methods are discussed here, especially for high-dimensional left-censored linear models: \[ y_t = \max \{0,\beta^Tx_t + \epsilon_t, t=1,2,\dots,n \}, \] where \(x_t, y_t\), \(t=1,\dots,n\), are the input \(p\)-vectors, scalar output variables, resp., \(\epsilon_t\), \(t=1,\dots,n\), denote independent error vectors, and \(\beta\) is the unknown parameter \(p\)-vector to be estimated. For high-dimensional data, robust estimation methods and confidence intervals are presented for left-censored regression problems. Furthermore, consistency and asymptotic normality results are derived. Numerical results on simulated data sets are shown.

MSC:

62P20 Applications of statistics to economics
62J05 Linear regression; mixed models
62N01 Censored data models
62G35 Nonparametric robustness
62G15 Nonparametric tolerance and confidence regions
62H12 Estimation in multivariate analysis
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Takeshi Amemiya. Regression analysis when the dependent variable is truncated normal., Econometrica: Journal of the Econometric Society, pages 997 –1016, 1973. · Zbl 0282.62061 · doi:10.2307/1914031
[2] Alexandre Belloni, Victor Chernozhukov, and Kengo Kato. Robust inference in high-dimensional approximately sparse quantile regression models. Technical report, cemmap working paper, Centre for Microdata Methods and Practice, 2013. · Zbl 1456.62066 · doi:10.3150/11-BEJ410
[3] Alexandre Belloni, Victor Chernozhukov, and Kengo Kato. Uniform post-selection inference for least absolute deviation regression and other z-estimation problems., Biometrika, page asu056, 2014. · Zbl 1420.62169
[4] Alexandre Belloni, Victor Chernozhukov, Denis Chetverikov, and Ying Wei. Uniformly valid post-regularization confidence regions for many functional parameters in z-estimation framework., to appear in the Annals of Statistics, 2017. · Zbl 1407.62268 · doi:10.1214/17-AOS1671
[5] Peter J Bickel. One-step huber estimates in the linear model., Journal of the American Statistical Association, 70(350):428-434, 1975. · Zbl 0322.62038 · doi:10.1080/01621459.1975.10479884
[6] Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and dantzig selector., The Annals of Statistics, pages 1705-1732, 2009. · Zbl 1173.62022 · doi:10.1214/08-AOS620
[7] Jelena Bradic, Jianqing Fan, and Weiwei Wang. Penalized composite quasi-likelihood for ultrahigh dimensional variable selection., Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3):325-349, 2011. · Zbl 1411.62181
[8] Siddhartha Chib. Bayes inference in the tobit censored regression model., Journal of Econometrics, 51(1-2):79-99, 1992. · Zbl 0742.62033 · doi:10.1016/0304-4076(92)90030-U
[9] Clint W Coakley and Thomas P Hettmansperger. A bounded influence, high breakdown, efficient regression estimator., Journal of the American Statistical Association, 88(423):872-880, 1993. · Zbl 0783.62024 · doi:10.1080/01621459.1993.10476352
[10] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle properties., Journal of the American statistical Association, 96(456) :1348-1360, 2001. · Zbl 1073.62547 · doi:10.1198/016214501753382273
[11] Amos Golan, George Judge, and Jeffrey Perloff. Estimation and inference with censored and ordered multinomial response data., Journal of Econometrics, 79(1):23-51, 1997. · Zbl 0910.62122 · doi:10.1016/S0304-4076(97)00006-7
[12] Frank R Hampel. The influence curve and its role in robust estimation., Journal of the american statistical association, 69(346):383-393, 1974. · Zbl 0305.62031 · doi:10.1080/01621459.1974.10482962
[13] Richard Walter Hill., Robust regression when there are outliers in the carriers. PhD thesis, Harvard University, 1977.
[14] Peter J Huber. Robust regression: asymptotics, conjectures and monte carlo., The Annals of Statistics, pages 799-821, 1973. · Zbl 0289.62033 · doi:10.1214/aos/1176342503
[15] Adel Javanmard and Andrea Montanari. Hypothesis testing in high-dimensional regression under the gaussian random design model: Asymptotic theory., IEEE Transactions on Information Theory, 60(10) :6522-6554, 2014. · Zbl 1360.62074 · doi:10.1109/TIT.2014.2343629
[16] Noureddine El Karoui and Elizabeth Purdom. Can we trust the bootstrap in high-dimension?, arXiv preprint arXiv :1608.00696, 2016. · Zbl 1444.62039
[17] Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse representations for high-dimensional data., The Annals of Statistics, pages 246-270, 2009. · Zbl 1155.62050 · doi:10.1214/07-AOS582
[18] Patric Müller and Sara van de Geer. Censored linear model in high dimensions., Test, 25(1):75-92, 2016. · Zbl 1341.62218 · doi:10.1007/s11749-015-0441-7
[19] Sahand Negahban, Bin Yu, Martin J Wainwright, and Pradeep K Ravikumar. A unified framework for high-dimensional analysis of \(m\)-estimators with decomposable regularizers. In, Advances in Neural Information Processing Systems, pages 1348-1356, 2009. · Zbl 1331.62350 · doi:10.1214/12-STS400
[20] Whitney K Newey and James L Powell. Efficient estimation of linear and type i censored regression models under conditional quantile restrictions., Econometric Theory, 6(03):295-317, 1990.
[21] M. Neykov, Y. Ning, J. S. Liu, and H. Liu. A Unified Theory of Confidence Regions and Testing for High Dimensional Estimating Equations., ArXiv e-prints, October 2015. · Zbl 1403.62101 · doi:10.1214/18-STS661
[22] Yang Ning and Han Liu. A general theory of hypothesis tests and confidence regions for sparse high dimensional models., Ann. Statist., 45(1):158-195, 02 2017. URL https://doi.org/10.1214/16-AOS1448. · Zbl 1364.62128 · doi:10.1214/16-AOS1448
[23] James L Powell. Least absolute deviations estimation for the censored regression model., Journal of Econometrics, 25(3):303-325, 1984. · Zbl 0571.62100 · doi:10.1016/0304-4076(84)90004-6
[24] James L Powell. Censored regression quantiles., Journal of econometrics, 32(1):143-155, 1986a. · Zbl 0605.62139 · doi:10.1016/0304-4076(86)90016-3
[25] James L Powell. Symmetrically trimmed least squares estimation for tobit models., Econometrica: journal of the Econometric Society, pages 1435-1460, 1986b. · Zbl 0625.62048 · doi:10.2307/1914308
[26] Zhao Ren, Tingni Sun, Cun-Hui Zhang, Harrison H Zhou, et al. Asymptotic normality and optimalities in estimation of large gaussian graphical models., The Annals of Statistics, 43(3):991 –1026, 2015. · Zbl 1328.62342 · doi:10.1214/14-AOS1286
[27] Alessandro Rinaldo, Larry Wasserman, Max G’Sell, Jing Lei, and Ryan Tibshirani. Bootstrapping and sample splitting for high-dimensional, assumption-free inference., arXiv preprint arXiv :1611.05401, 2016.
[28] Weixing Song. Distribution-free test in tobit mean regression model., Journal of Statistical Planning and Inference, 141(8) :2891-2901, 2011. · Zbl 1213.62079 · doi:10.1016/j.jspi.2011.03.012
[29] Luke C Swenson, Bryan Cobb, Anna Maria Geretti, P Richard Harrigan, Mario Poljak, Carole Seguin-Devaux, Chris Verhofstede, Marc Wirden, Alessandra Amendola, Jurg Boni, et al. Comparative performances of hiv-1 rna load assays at low viral load levels: results of an international collaboration., Journal of clinical microbiology, 52(2):517-523, 2014.
[30] James Tobin. Estimation of relationships for limited dependent variables., Econometrica: journal of the Econometric Society, pages 24-36, 1958. · Zbl 0088.36607 · doi:10.2307/1907382
[31] Sara Van de Geer, Peter Bühlmann, Ya’acov Ritov, Ruben Dezeure, et al. On asymptotically optimal confidence regions and tests for high-dimensional models., The Annals of Statistics, 42(3) :1166-1202, 2014. · Zbl 1305.62259 · doi:10.1214/14-AOS1221
[32] Sara A Van De Geer, Peter Bühlmann, et al. On the conditions used to prove oracle results for the lasso., Electronic Journal of Statistics, 3 :1360-1392, 2009. · Zbl 1327.62425 · doi:10.1214/09-EJS506
[33] Aad W Van der Vaart., Asymptotic statistics, volume 3. Cambridge university press, 2000. · Zbl 1013.62031
[34] Aad W Van Der Vaart and Jon A Wellner. Weak convergence. In, Weak Convergence and Empirical Processes, pages 16-28. Springer, 1996. · Zbl 0862.60002
[35] Cun-Hui Zhang and Stephanie S Zhang. Confidence intervals for low dimensional parameters in high dimensional linear models., Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):217-242, 2014. · Zbl 1411.62196
[36] Peng Zhao and Bin Yu. On model selection consistency of lasso., Journal of Machine learning research, 7(Nov) :2541-2563, 2006. · Zbl 1222.62008
[37] Tianqi Zhao, Mladen Kolar, and Han Liu. A general framework for robust testing and confidence regions in high-dimensional quantile regression., arXiv preprint arXiv :1412.8724, 2014a.
[38] Yudong Zhao, Bruce M Brown, You-Gan Wang, et al. Smoothed rank-based procedure for censored data., Electronic Journal of Statistics, 8(2) :2953-2974, 2014b. · Zbl 1311.62168 · doi:10.1214/14-EJS975
[39] Mikhail Zhelonkin, Marc G Genton, and Elvezio Ronchetti. Robust inference in sample selection models., Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(4):805-827, 2016. · Zbl 1414.62063
[40] Kenneth Q. Zhou and Stephen L. Portnoy. Direct use of regression quantiles to construct confidence sets in linear models., Ann. Statist., 24(1):287-306, 02 1996. · Zbl 0853.62040 · doi:10.1214/aos/1033066210
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.