×

Contraction and uniform convergence of isotonic regression. (English) Zbl 1478.62098

Summary: We consider the problem of isotonic regression, where the underlying signal \(x\) is assumed to satisfy a monotonicity constraint, that is, \(x\) lies in the cone \(\{x\in \mathbb{R}^{n}:x_{1}\leq \dots\leq x_{n}\}\). We study the isotonic projection operator (projection to this cone), and find a necessary and sufficient condition characterizing all norms with respect to which this projection is contractive. This enables a simple and non-asymptotic analysis of the convergence properties of isotonic regression, yielding uniform confidence bands that adapt to the local Lipschitz properties of the signal.

MSC:

62G08 Nonparametric regression and quantile regression
62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference

References:

[1] Fadoua Balabdaoui, Hanna Jankowski, Marios Pavlides, Arseni Seregin, and Jon Wellner. On the grenander estimator at zero., Statistica Sinica, 21(2):873, 2011. · Zbl 1214.62037 · doi:10.5705/ss.2011.038a
[2] Richard E Barlow, David J Bartholomew, JM Bremner, and H Daniel Brunk., Statistical inference under order restrictions: The theory and application of isotonic regression. Wiley New York, 1972. · Zbl 0246.62038
[3] Lucien Birgé. Estimating a density under order restrictions: Nonasymptotic minimax risk., The Annals of Statistics, pages 995 –1012, 1987. · Zbl 0631.62037 · doi:10.1214/aos/1176350488
[4] Lucien Birgé and Pascal Massart. Rates of convergence for minimum contrast estimators., Probability Theory and Related Fields, 97(1):113-150, 1993. · Zbl 0805.62037 · doi:10.1007/BF01199316
[5] Lev M Bregman. The method of successive projection for finding a common point of convex sets(theorems for determining common point of convex sets by method of successive projection)., Soviet Mathematics, 6:688-692, 1965. · Zbl 0142.16804
[6] Hugh D Brunk., Estimation of isotonic regression. University of Missouri-Columbia, 1969.
[7] Chris Carolan and Richard Dykstra. Asymptotic behavior of the grenander estimator at density flat regions., Canadian Journal of Statistics, 27(3):557-566, 1999. · Zbl 0949.62035 · doi:10.2307/3316111
[8] Eric Cator. Adaptivity and optimality of the monotone least-squares estimator., Bernoulli, 17(2):714-735, 2011. · Zbl 1345.62066 · doi:10.3150/10-BEJ289
[9] Sabyasachi Chatterjee, Adityanand Guntuboyina, Bodhisattva Sen, et al. On risk bounds in isotonic and other shape restricted regression problems., The Annals of Statistics, 43(4) :1774-1800, 2015. · Zbl 1317.62032 · doi:10.1214/15-AOS1324
[10] Mathias Drton and Caroline Klivans. A geometric interpretation of the characteristic polynomial of reflection arrangements., Proceedings of the American Mathematical Society, 138(8) :2873-2887, 2010. · Zbl 1208.51008 · doi:10.1090/S0002-9939-10-10369-4
[11] Lutz Dümbgen. Optimal confidence bands for shape-restricted curves., Bernoulli, 9(3):423-449, 2003. · Zbl 1044.62051
[12] Cécile Durot, Vladimir N Kulikov, and Hendrik P Lopuhaä. The limit distribution of the \(l_∞ \)-error of grenander-type estimators., The Annals of Statistics, pages 1578-1608, 2012. · Zbl 1257.62017 · doi:10.1214/12-AOS1015
[13] Theo Gasser, Lothar Sroka, and Christine Jennen-Steinmetz. Residual variance and residual pattern in nonlinear regression., Biometrika, pages 625-633, 1986. · Zbl 0649.62035 · doi:10.1093/biomet/73.3.625
[14] Ulf Grenander. On the theory of mortality measurement: part ii., Scandinavian Actuarial Journal, 1956(2):125-153, 1956. · Zbl 0077.33715
[15] Piet Groeneboom. Estimating a monotone density., Department of Mathematical Statistics, (R 8403):1-14, 1984.
[16] Shih-Ping Han. A successive projection method., Mathematical Programming, 40(1-3):1-14, 1988. · Zbl 0685.90074
[17] Hanna Jankowski. Convergence of linear functionals of the grenander estimator under misspecification., The Annals of Statistics, 42(2):625-653, 2014. · Zbl 1302.62045 · doi:10.1214/13-AOS1196
[18] Mary Meyer and Michael Woodroofe. On the degrees of freedom in shape-restricted regression., Annals of Statistics, pages 1083-1104, 2000. · Zbl 1105.62340 · doi:10.1214/aos/1015956708
[19] BLS Prakasa Rao. Estimation of a unimodal density., Sankhyā: The Indian Journal of Statistics, Series A, pages 23-36, 1969. · Zbl 0181.45901
[20] John Rice. Bandwidth choice for nonparametric regression., The Annals of Statistics, pages 1215-1230, 1984. · Zbl 0554.62035 · doi:10.1214/aos/1176346788
[21] Sara Van de Geer. Estimating a regression function., The Annals of Statistics, pages 907-924, 1990. · Zbl 0709.62040 · doi:10.1214/aos/1176347632
[22] Sara Van de Geer. Hellinger-consistency of certain nonparametric maximum likelihood estimators., The Annals of Statistics, pages 14-44, 1993. · Zbl 0779.62033 · doi:10.1214/aos/1176349013
[23] Yazhen Wang and KS Chen. The l2risk of an isotonic estimate., Communications in Statistics-Theory and Methods, 25(2):281-294, 1996. · Zbl 0875.62143 · doi:10.1080/03610929608831695
[24] Farrol T Wright. The asymptotic behavior of monotone regression estimates., The Annals of Statistics, 9(2):443-448, 1981. · Zbl 0471.62062 · doi:10.1214/aos/1176345411
[25] Cun-Hui Zhang. Risk bounds in isotonic regression., The Annals of Statistics, 30(2):528-555, 2002. · Zbl 1012.62045 · doi:10.1214/aos/1021379864
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.