×

zbMATH — the first resource for mathematics

Misinterpretation risks of global stochastic optimisation of kinetic models revealed by multiple optimisation runs. (English) Zbl 1409.92107
Summary: One of use cases for metabolic network optimisation of biotechnologically applied microorganisms is the in silico design of new strains with an improved distribution of metabolic fluxes. Global stochastic optimisation methods (genetic algorithms, evolutionary programing, particle swarm and others) can optimise complicated nonlinear kinetic models and are friendly for unexperienced user: they can return optimisation results with default method settings (population size, number of generations and others) and without adaptation of the model. Drawbacks of these methods (stochastic behaviour, undefined duration of optimisation, possible stagnation and no guaranty of reaching optima) cause optimisation result misinterpretation risks considering the very diverse educational background of the systems biology and synthetic biology research community. Different methods implemented in the COPASI software package are tested in this study to determine their ability to find feasible solutions and assess the convergence speed to the best value of the objective function. Special attention is paid to the potential misinterpretation of results. Optimisation methods are tested with additional constraints that can be introduced to ensure the biological feasibility of the resulting optimised design: (1) total enzyme activity constraint (called also amino acid pool constraint) to limit the sum of enzyme concentrations and (2) homeostatic constraint limiting steady state metabolite concentration corridor around the steady state concentrations of metabolites in the original model. Impact of additional constraints on the performance of optimisation methods and misinterpretation risks is analysed.
MSC:
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C42 Systems biology, networks
49N90 Applications of optimal control and differential games
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Almquist, J.; Cvijovic, M.; Hatzimanikatis, V.; Nielsen, J.; Jirstrand, M., Kinetic models in industrial biotechnology - improving cell factory performance, Metab. Eng., 24, 38-60, (2014)
[2] Baker, S. M.; Schallau, K.; Junker, B. H., Comparison of different algorithms for simultaneous estimation of multiple parameters in kinetic metabolic models, J. Integr. Bioinform., 7, 1-9, (2010)
[3] Balsa-Canto, E.; Banga, J. R.; Egea, J.a.; Fernandez-Villaverde, a.; De Hijas-Liste, G. M., Global optimization in systems biology: stochastic methods and their applications, Adv. Exp. Med. Biol., 736, 409-424, (2012)
[4] Banga, J. R., Optimization in computational systems biology, BMC Syst. Biol., 2, 47, (2008)
[5] Bruck, J.; Liebermeister, W.; Klipp, E., Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis, Genome Inform., 20, 1-14, (2008)
[6] Bulipopa, N.; Sulins, J., Automatic termination of parallel optimization runs of global stochastic optimization methods by upper limit criterion, Biosyst. Inf. Technol., 2, 15-18, (2013)
[7] Elsts, A.; Pentjuss, A.; Stalidzans, E., SpaceScanner: COPASI wrapper for automated management of global stochastic optimization experiments, Bioinformatics, 33, 2966-2967, (2017)
[8] Hoefnagel, M. H.N.; Starrenburg, M. J.C.; Martens, D. E.; Hugenholtz, J.; Kleerebezem, M.; Van Swam, I. I.; Bongers, R.; Westerhoff, H. V.; Snoep, J. L., Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis, Microbiology, 148, 1003-1013, (2002)
[9] Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes, P.; Kummer, U., COPASI-a COmplex PAthway SImulator, Bioinformatics, 22, 3067-3074, (2006)
[10] Hynne, F.; Danø, S.; Sørensen, P. G., Full-scale model of glycolysis in Saccharomyces cerevisiae, Biophys. Chem., 94, 121-163, (2001)
[11] Juty, N.; Ali, R.; Glont, M.; Keating, S.; Rodriguez, N.; Swat, M.; Wimalaratne, S.; Hermjakob, H.; Le Novère, N.; Laibe, C.; Chelliah, V., BioModels: content, features, functionality, and use. CPT pharmacometrics syst, Pharmacol., 4, 55-68, (2015)
[12] Kacser, H.; Acerenza, L., A universal method for achieving increases in metabolite production, Eur. J. Biochem., 216, 361-367, (1993)
[13] Komasilovs, V.; Pentjuss, A.; Elsts, A.; Stalidzans, E., Total enzyme activity constraint and homeostatic constraint impact on the optimization potential of a kinetic model, Biosystems, 162, 128-134, (2017)
[14] Kostromins, A.; Mozga, I.; Stalidzans, E., ConvAn: a convergence analyzing tool for optimization of biochemical networks, Biosystems, 108, 73-77, (2012)
[15] Le Novère, N.; Bornstein, B. J.; Broicher, A.; Courtot, M.; Donizelli, M.; Dharuri, H.; Li, L.; Sauro, H.; Schilstra, M.; Shapiro, B.; Snoep, J. L.; Hucka, M., Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems, Nucleic Acids Res., 34, D689-D691, (2006)
[16] Machado, D.; Costa, R. S.; Ferreira, E. C.; Rocha, I.; Tidor, B., Exploring the gap between dynamic and constraint-based models of metabolism, Metab. Eng., 14, 112-119, (2012)
[17] Magnus, J. B.; Oldiges, M.; Takors, R., The identification of enzyme targets for the optimization of a valine producing Corynebacterium glutamicum strain using a kinetic model, Biotechnol. Prog., 25, 754-762, (2009)
[18] Maiwald, T.; Timmer, J., Dynamical modeling and multi-experiment fitting with PottersWheel, Bioinformatics, 24, 2037-2043, (2008)
[19] Mauch, K.; Buziol, S.; Schmid, J.; Reuss, M., Computer-aided design of metabolic networks, (Proceedings of the AIChE Symposium Series, (2001)), 82-91
[20] Mendes, P.; Hoops, S.; Sahle, S.; Gauges, R.; Dada, J. O.; Kummer, U., Computational modeling of biochemical networks using COPASI, (Maly, I. V., Methods in Molecular Biology, Systems Biology, Methods in Molecular Biology, (2009), Humana Press: Humana Press Totowa, NJ), 17-59
[21] Mendes, P.; Kell, D. B., Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation, Bioinformatics, 14, 869-883, (1998)
[22] Moles, C. G.; Mendes, P.; Banga, J. R., Parameter estimation in biochemical pathways: a comparison of global optimization methods, Genome Res., 13, 2467-2474, (2003)
[23] Mozga, I.; Kostromins, A.; Stalidzans, E., Forecast of numerical optimization progress of biochemical networks, (Proceedings of the International Conference Engineering for Rural Development. Proceedings of the International Conference Engineering for Rural Development, Jelgava, (2011)), 103-108, 26-27 May 2011
[24] Mozga, I.; Stalidzans, E., Reduction of combinatorial space of adjustable kinetic parameters of biochemical network models in optimisation task, Balt. J. Mod. Comput., 2, 150-159, (2014)
[25] Mozga, I.; Stalidzans, E., Convergence dynamics of biochemical models to the global optimum, (Proceedings of the 3rd International Conference on E-Health and Bioengineering, 24-26 November 2011. Proceedings of the 3rd International Conference on E-Health and Bioengineering, 24-26 November 2011, Iasi, (2011)), 227-230
[26] Nikolaev, E. V., The elucidation of metabolic pathways and their improvements using stable optimization of large-scale kinetic models of cellular systems, Metab. Eng., 12, 26-38, (2010)
[27] Rodrı́guez-Acosta, F.; Regalado, C. M.; Torres, N. V., Non-linear optimization of biotechnological processes by stochastic algorithms: Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae, J. Biotechnol., 68, 15-28, (1999)
[28] Rohwer, J. M.; Botha, F. C., Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data, Biochem. J., 358, 437-445, (2001)
[29] Schmid, J.; Mauch, K.; Reuss, M.; Gilles, E. D.; Kremling, A., Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli, Metab. Eng., 6, 364-377, (2004)
[30] Schmidt, H.; Jirstrand, M., Systems biology toolbox for MATLAB: a computational platform for research in systems biology, Bioinformatics, 22, 514-515, (2006)
[31] Stalidzans, E.; Kostromins, A.; Sulins, J., Two stage optimization of biochemical pathways using parallel runs of global stochastic optimization methods, (Proceedings of the 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI), (2012), IEEE), 365-369
[32] Stalidzans, E.; Mozga, I.; Sulins, J.; Zikmanis, P., Search for a minimal set of parameters by assessing the total optimization potential for a dynamic model of a biochemical network, IEEE/ACM Trans. Comput. Biol. Bioinforma., 14, 978-985, (2017)
[33] Stalidzans, E.; Seiman, A.; Peebo, K.; Komasilovs, V.; Pentjuss, A., Model-based metabolism design: constraints for kinetic and stoichiometric models, Biochem. Soc. Trans., 261-267, (2018), BST20170263
[34] Stelling, J., Mathematical models in microbial systems biology, Curr. Opin. Microbiol., 7, 513-518, (2004)
[35] Sulins, J.; Mednis, M., Automatic termination of parallel optimization runs of stochastic global optimization methods in consensus or stagnation cases, Biosyst. Inf. Technol., 1, 1-5, (2012)
[36] Sulins, J.; Stalidzans, E., Corunner: multiple optimization run manager for Copasi software, (Proceedings of 5th International Scientific Conference on Applied Information and Communication Technologies, 26-27 April 2012. Proceedings of 5th International Scientific Conference on Applied Information and Communication Technologies, 26-27 April 2012, Jelgava, (2012)), 312-316
[37] Visser, D.; Schmid, J.; Mauch, K.; Reuss, M.; Heijnen, J. J., Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics, Metab. Eng., 6, 378-390, (2004)
[38] Wiechert, W.; Noack, S., Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile, Curr. Opin. Biotechnol., 22, 604-610, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.