×

zbMATH — the first resource for mathematics

Lower error bounds for strong approximation of scalar SDEs with non-Lipschitzian coefficients. (English) Zbl 07039124
Summary: We study pathwise approximation of scalar stochastic differential equations at a single time point or globally in time by means of methods that are based on finitely many observations of the driving Brownian motion. We prove lower error bounds in terms of the average number of evaluations of the driving Brownian motion that hold for every such method under rather mild assumptions on the coefficients of the equation. The underlying simple idea of our analysis is as follows: the lower error bounds known for equations with coefficients that have sufficient regularity globally in space should still apply in the case of coefficients that have this regularity in space only locally, in a small neighborhood of the initial value. Our results apply to a huge variety of equations with coefficients that are not globally Lipschitz continuous in space including Cox-Ingersoll-Ross processes, equations with superlinearly growing coefficients, and equations with discontinuous coefficients. In many of these cases, the resulting lower error bounds even turn out to be sharp.

MSC:
65C30 Numerical solutions to stochastic differential and integral equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Alfonsi, A. (2013). Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process. Statist. Probab. Lett.83 602–607. · Zbl 1273.65007
[2] Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc.6 170–176. · Zbl 0066.37402
[3] Beyn, W.-J., Isaak, E. and Kruse, R. (2016). Stochastic C-stability and B-consistency of explicit and implicit Euler-type schemes. J. Sci. Comput.67 955–987. · Zbl 1362.65011
[4] Beyn, W.-J., Isaak, E. and Kruse, R. (2017). Stochastic C-stability and B-consistency of explicit and implicit Milstein-type schemes. J. Sci. Comput.70 1042–1077. · Zbl 1397.65013
[5] Bogachev, V. I. (1998). Gaussian Measures. Mathematical Surveys and Monographs62. Amer. Math. Soc., Providence, RI.
[6] Burrage, P. M., Herdiana, R. and Burrage, K. (2004). Adaptive stepsize based on control theory for stochastic differential equations. J. Comput. Appl. Math.170 317–336. · Zbl 1049.65009
[7] Calvin, J. M., Hefter, M. and Herzwurm, A. (2017). Adaptive approximation of the minimum of Brownian motion. J. Complexity39 17–37. · Zbl 1358.65012
[8] Cambanis, S. and Hu, Y. (1996). Exact convergence rate of the Euler–Maruyama scheme, with application to sampling design. Stoch. Stoch. Rep.59 211–240. · Zbl 0868.60048
[9] Clark, J. M. C. and Cameron, R. J. (1980). The maximum rate of convergence of discrete approximations for stochastic differential equations. In Stochastic Differential Systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978). Lecture Notes in Control and Information Sci.25 162–171. Springer, Berlin.
[10] Dereich, S., Neuenkirch, A. and Szpruch, L. (2012). An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.468 1105–1115. · Zbl 1364.65013
[11] Gaines, J. G. and Lyons, T. J. (1997). Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math.57 1455–1484. · Zbl 0888.60046
[12] Gerencsér, M., Jentzen, A. and Salimova, D. (2017). On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.473 20170104, 16. · Zbl 1404.60082
[13] Göing-Jaeschke, A. and Yor, M. (2003). A survey and some generalizations of Bessel processes. Bernoulli9 313–349. · Zbl 1038.60079
[14] Göttlich, S., Lux, K. and Neuenkirch, A. (2017). The Euler scheme for stochastic differential equations with discontinuous drift coefficient: A numerical study of the convergence rate. arXiv:1705.04562.
[15] Hairer, M., Hutzenthaler, M. and Jentzen, A. (2015). Loss of regularity for Kolmogorov equations. Ann. Probab.43 468–527. · Zbl 1322.35083
[16] Hefter, M. and Herzwurm, A. (2017). Optimal strong approximation of the one-dimensional squared Bessel process. Commun. Math. Sci.15 2121–2141. · Zbl 1453.65018
[17] Hefter, M. and Herzwurm, A. (2018). Strong convergence rates for Cox–Ingersoll–Ross processes—Full parameter range. J. Math. Anal. Appl.459 1079–1101. · Zbl 1388.60117
[18] Hefter, M. and Jentzen, A. (2017). On arbitrarily slow convergence rates for strong numerical approximations of Cox–Ingersoll–Ross processes and squared Bessel processes. arXiv:1702.08761. · Zbl 1425.91401
[19] Hofmann, N. and Müller-Gronbach, T. (2004). On the global error of Itô–Taylor schemes for strong approximation of scalar stochastic differential equations. J. Complexity20 732–752. · Zbl 1068.65013
[20] Hofmann, N. and Müller-Gronbach, T. (2006). A modified Milstein scheme for approximation of stochastic delay differential equations with constant time lag. J. Comput. Appl. Math.197 89–121. · Zbl 1107.65008
[21] Hofmann, N., Müller-Gronbach, T. and Ritter, K. (2000). Optimal approximation of stochastic differential equations by adaptive step-size control. Math. Comp.69 1017–1034. · Zbl 0948.65002
[22] Hofmann, N., Müller-Gronbach, T. and Ritter, K. (2000). Step size control for the uniform approximation of systems of stochastic differential equations with additive noise. Ann. Appl. Probab.10 616–633. · Zbl 1054.65007
[23] Hofmann, N., Müller-Gronbach, T. and Ritter, K. (2001). The optimal discretization of stochastic differential equations. J. Complexity17 117–153. · Zbl 0991.60047
[24] Hofmann, N., Müller-Gronbach, T. and Ritter, K. (2002). Linear vs standard information for scalar stochastic differential equations. J. Complexity18 394–414. · Zbl 1008.65005
[25] Hutzenthaler, M., Jentzen, A. and Kloeden, P. E. (2012). Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab.22 1611–1641. · Zbl 1256.65003
[26] Hutzenthaler, M., Jentzen, A. and Kloeden, P. E. (2013). Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations. Ann. Appl. Probab.23 1913–1966. · Zbl 1283.60098
[27] Jentzen, A., Müller-Gronbach, T. and Yaroslavtseva, L. (2016). On stochastic differential equations with arbitrary slow convergence rates for strong approximation. Commun. Math. Sci.14 1477–1500. · Zbl 1355.65012
[28] Kumar, C. and Sabanis, S. (2016). On Milstein approximations with varying coefficients: The case of super-linear diffusion coefficients. arXiv:1601.02695.
[29] Leobacher, G. and Szölgyenyi, M. (2016). A numerical method for SDEs with discontinuous drift. BIT56 151–162. · Zbl 1341.65005
[30] Lifshits, M. (2012). Lectures on Gaussian Processes. Springer, Heidelberg. · Zbl 1248.60002
[31] Mao, X. (2008). Stochastic Differential Equations and Applications, 2nd ed. Horwood Publishing Limited, Chichester.
[32] Mauthner, S. (1998). Step size control in the numerical solution of stochastic differential equations. J. Comput. Appl. Math.100 93–109. · Zbl 0928.65015
[33] Moon, K.-S., Szepessy, A., Tempone, R. and Zouraris, G. E. (2005). Convergence rates for adaptive weak approximation of stochastic differential equations. Stoch. Anal. Appl.23 511–558. · Zbl 1079.65012
[34] Müller-Gronbach, T. (2002). The optimal uniform approximation of systems of stochastic differential equations. Ann. Appl. Probab.12 664–690. · Zbl 1019.65009
[35] Müller-Gronbach, T. (2004). Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Probab.14 1605–1642. · Zbl 1074.65010
[36] Müller-Gronbach, T. and Yaroslavtseva, L. (2018). A note on strong approximation of SDEs with smooth coefficients that have at most linearly growing derivatives. J. Math. Anal. Appl.467 1013–1031. · Zbl 06925396
[37] Neuenkirch, A. (2006). Optimal approximation of SDE’s with additive fractional noise. J. Complexity22 459–474. · Zbl 1106.65003
[38] Neuenkirch, A. (2008). Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion. Stochastic Process. Appl.118 2294–2333. · Zbl 1154.60338
[39] Neuenkirch, A. and Shalaiko, T. (2016). The maximum rate of convergence for the approximation of the fractional Lévy area at a single point. J. Complexity33 107–117. · Zbl 1333.65009
[40] Pakkanen, M. S. (2010). Stochastic integrals and conditional full support. J. Appl. Probab.47 650–667. · Zbl 1216.60047
[41] Przybyłowicz, P. (2014). Optimality of Euler-type algorithms for approximation of stochastic differential equations with discontinuous coefficients. Int. J. Comput. Math.91 1461–1479. · Zbl 1384.65010
[42] Przybyłowicz, P. (2015). Optimal global approximation of SDEs with time-irregular coefficients in asymptotic setting. Appl. Math. Comput.270 441–457.
[43] Przybyłowicz, P. (2015). Minimal asymptotic error for one-point approximation of SDEs with time-irregular coefficients. J. Comput. Appl. Math.282 98–110. · Zbl 1322.65015
[44] Rümelin, W. (1982). Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal.19 604–613. · Zbl 0496.65038
[45] Sabanis, S. (2016). Euler approximations with varying coefficients: The case of superlinearly growing diffusion coefficients. Ann. Appl. Probab.26 2083–2105. · Zbl 1352.60101
[46] Wang, X. and Gan, S. (2013). The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Difference Equ. Appl.19 466–490. · Zbl 1262.65008
[47] Yamato, Y. (1979). Stochastic differential equations and nilpotent Lie algebras. Z. Wahrsch. Verw. Gebiete47 213–229. · Zbl 0427.60069
[48] Yaroslavtseva, L. (2017). On non-polynomial lower error bounds for adaptive strong approximation of SDEs. J. Complexity42 1–18. · Zbl 1396.65012
[49] Zvonkin, A. · Zbl 0306.60049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.