Leroux, Pierre Reduced matrices and q-log-concavity properties of q-Stirling numbers. (English) Zbl 0704.05003 J. Comb. Theory, Ser. A 54, No. 1, 64-84 (1990). Author’s abstract: “We prove the q-log-concavity of the q-Stirling number of the second kind, which was recently conjectured by Lynne Butler, by suitably extending her injective proof of the analogous property of the q-binomial coefficients. For this we introduce new combinatorial interpretations of Stirling numbers of both kinds in terms of “0-1 tableaux” inspired from a row-reduced echelon matrix representation of restricted growth functions. Other related results, methods, counterexamples, and conjectures are discussed.” Reviewer: J.Cigler Cited in 40 Documents MSC: 05A15 Exact enumeration problems, generating functions 05A40 Umbral calculus 11B73 Bell and Stirling numbers 05E10 Combinatorial aspects of representation theory Keywords:q-log-concavity; q-Stirling number of the second kind; 0-1 tableaux PDF BibTeX XML Cite \textit{P. Leroux}, J. Comb. Theory, Ser. A 54, No. 1, 64--84 (1990; Zbl 0704.05003) Full Text: DOI References: [1] Butler, L. M., A unimodality result in the enumeration of subgroups of a finite abelian group, (Proc. Amer. Math. Soc., 101 (1987)), 771-775 · Zbl 0647.20053 [2] Butler, L. M., The \(q\)-log-concavity of \(q\)-binomial coefficients, J. Combin. Theory Ser. A, 54, 53-62 (1990) [3] Carlitz, L., On abelian fields, Trans. Amer. Math. Soc., 35, 122-136 (1933) · JFM 59.0188.02 [4] Content, M.; Lemay, F.; Leroux, P., Catégories de Möbius et fonctorialités: un cadre général pour l’inversion de Möbius, J. Combin. Theory Ser. A, 28, 169-190 (1980) · Zbl 0449.05004 [5] Doubilet, P.; Rota, G.-C; Stanley, R. P., The idea of geneating function, (Proceedings, 6th Berkeley Symposium, Vol. 2 (1973), Univ. of California Press: Univ. of California Press Berkeley), 267-318 [6] Garsia, A. M.; Remmel, J. B., \(q\)-counting rook configurations and a formula of Frobenius, J. Combin. Theory Ser. A, 41, 246-275 (1986) · Zbl 0598.05007 [7] Gessel, I.; Viennot, G. X., Binomial determinants, paths, and hook length formulae, Adv. in Math., 58, 300-321 (1988) · Zbl 0579.05004 [8] Gould, H. W., The \(q\)-Stirling numbers of first and second kinds, Duke Math. J., 28, 281-289 (1961) · Zbl 0201.33601 [9] Knuth, D., Subspaces, subsets and partitions, J. Combin. Theory, 10, 178-180 (1971) · Zbl 0221.05024 [10] Leroux, P., Les catégories de Möbius, Cahiers Topologie Géom. Différentielle Catégoriques, 16, 280-282 (1975) · Zbl 0364.18001 [11] Leroux, P., “Catégories triangulaires: Exemples, applications et problèmes,” rapport de recherche, ((1980), Universté du Québec à Montréal), 72, juillet [12] Leroux, P., Reduced matrices and combinatorics, contributed communication, (SIAM Conference on Applied Linear Algebra (April 26-29, 1982), Raleigh: Raleigh North Carolina) [14] Macdonald, I. G., Symmetric Functions and Hall Polynomials (1979), Oxford Univ. Press: Oxford Univ. Press London · Zbl 0487.20007 [15] Milne, S. C., Restricted growth functions, rank row matchings of partition lattices, and \(q\)-Stirling numbers, Adv. in Math., 43, 173-196 (1982) · Zbl 0482.05012 [16] Nijenhuis, A.; Solow, A. E.; Wilf, H. S., Bijective methods in the theory of finite vector spaces, J. Combin. Theory Ser. A, 37, 80-84 (1984) · Zbl 0541.05003 [17] Sagan, B., Inductive and injective proofs of log concavity results, Discrete Math., 68, 281-292 (1988) · Zbl 0658.05003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.