zbMATH — the first resource for mathematics

Behavior of solutions for a Robin problem. (English) Zbl 0704.34033
The paper studies the behavior as \(k\to 0+\) of the solutions of the Robin problem \(y''=\theta^ 2g_ k(y)\), \(-y'(-1)+cy(-1)=a\), \(y'(1)+cy(1)=a\) relative to the solutions of \(y''=\theta^ 2g_ 0(y)\) with the same boundary conditions. It is assumed that \(g_ k\in C^ 1([0,a/c])\) \((k>0)\), \(g_ 0\in C^ 1((0,a/c])\) (notice that \(g_ 0\) may be singular at \(y=0)\), \(g_ k(y)>0\) for \(y\in (0,a/c]\), \(g_ 0(0)=0\), \(g_ k(y)\sim y^ b\) as \(y\to 0\) for some \(b\geq 1\) independent of k, \(g_ k(y)\uparrow g_ 0(y)\) uniformly on each [\(\epsilon\),a/c] \((\epsilon >0)\) as \(k\to 0+\) and \(g_ 0(y)\sim y^{-d}\) as \(y\to 0\) for some \(d>0\). Such models can be applied to describe the steady-state of certain reaction-diffusion chemical kinetics. Conditions for existence and for uniqueness or multiplicity of solutions and convergence to the solutions of \(y''=\theta^ 2g_ 0(y)\) are obtained.
Reviewer: C.A.Braumann

34B99 Boundary value problems for ordinary differential equations
Full Text: DOI
[1] Aris, R, The mathematical theory of diffusion and reaction in permeable catalysts, (1975), Clarendon Press Oxford · Zbl 0315.76051
[2] \scL. E. Bobisud, Asymptotic dead cores for reaction-diffusion equations, J. Math. Anal. Appl., to appear. · Zbl 0706.34052
[3] Bobisud, L.E; Royalty, W.D, Approach to a dead core for some reaction-diffusion equations, J. math. anal. appl., 142, 542-557, (1989) · Zbl 0686.34060
[4] \scL. E. Bobisud and W. D. Royalty, Existence, nonexistence, and uniqueness for a singular boundary value problem, to appear. · Zbl 0628.34025
[5] Brauner, C.M; Nicolaenko, B, Perturbation singulière, solutions multiples et hystérésis dans un problème de biochimie, C.R. acad. sci. Paris, Sér. I math., 283, 775-778, (1976) · Zbl 0347.35014
[6] Brauner, C.M; Nicolaenko, B, Singular perturbation, multiple solutions and hysteresis in a nonlinear problem, (), 50-76 · Zbl 0373.34007
[7] Brauner, C.M; Nicolaenko, B, Sur une classe de problèmes elliptiques non linéaires, C.R. acad. sci. Paris, Sér. I math., 286, 1007-1010, (1978) · Zbl 0371.35015
[8] Brauner, C.M; Nicolaenko, B; Brauner, C.M; Nicolaenko, B, Sur LES problèmes aux valeurs propres non linéaires qui se prolongent en problèmes à frontière libre, C.R. acad. sci. Paris, Sér. I math., C.R. acad. sci. Paris, Sér. I math., 288, 125-127, (1979) · Zbl 0431.35071
[9] Brauner, C.M; Nicolaenko, B, On nonlinear eigenvalue problems which extend into free boundaries problems, (), 61-100 · Zbl 0439.35058
[10] Brauner, C.M; Frémond, M; Nicolaenko, B, A new homographic approximation to multiphase Stefan problems, (), 365-379 · Zbl 0536.65090
[11] Brown, K.J; Ibrahim, M.M.A; Shivaji, R, S-shaped bifurcation curves, Nonlinear anal., 5, 475-486, (1981) · Zbl 0458.35036
[12] Diaz, J.I, Nonlinear partial differential equations and free boundaries, vol. 1: elliptic equations, (1985), Pitman Boston · Zbl 0595.35100
[13] Friedman, A; Phillips, D, The free boundary of a semilinear elliptic equation, Trans. amer. math. soc., 282, 153-182, (1984) · Zbl 0552.35079
[14] Gidas, B; Ni, W.-M; Nirenberg, L, Symmetry and related properties via the maximum principle, Comm. math. phys., 68, 209-243, (1979) · Zbl 0425.35020
[15] Gidas, B; Ni, W.-M; Nirenberg, L, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Adv. math. suppl. studies, 7A, 369-402, (1981)
[16] Graham-Eagle, J; Stakgold, I, A steady-state diffusion problem with fractional power absorption rate, IMA J. appl. math., 39, 67-73, (1987) · Zbl 0651.35030
[17] Rudin, W, Principles of mathematical analysis, (1976), McGraw-Hill New York · Zbl 0148.02903
[18] Stakgold, I; McNabb, A, Conversion estimates for gas-solid reactions, Math. modelling, 5, 325-330, (1984) · Zbl 0597.35064
[19] Vega, J.M; Liñán, A, Singular Langmuir-hinshelwood reaction-diffusion problems: strong adsorption under quasi-isothermal conditions, SIAM J. appl. math., 42, 1047-1068, (1982) · Zbl 0546.76105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.