zbMATH — the first resource for mathematics

A blow-up result for nonlinear diffusion equations. (English) Zbl 0704.35071
This paper studies the nonexistence of global solutions to the initial boundary value problems \[ u_ t=\Delta (u^ m)+u^ P-g(u),\quad x\in D,\quad t>0,\quad u(x,t)=0,\quad x\in \partial D,\quad t>0,\quad u(x,0)=u_ 0(x)\geq 0,\quad x\in D \] where D is a smooth bounded domain in \({\mathbb{R}}^ N\) and m,P are positive numbers, \(1<P\), \(0<m\leq P\). The main result of this paper is formulated as follows
H) Assume i) D is of class \(C^ 3\); ii) \(u_ 0(x)\) is non negative on D and \(u_ 0^ m\in H'_ 0(D)\cap L^{\infty}(D).\)
A) \(g\in C'[0,\infty)\), \(g(0)=0\), g(u)\(\geq 0\) for \(u\geq 0\) and \(G(u)=g(u^{1/m})\) satisfies \(G'(u)\leq \theta G(u)\), for \(0<\theta <P/m\) and all \(u>0.\)
If D and \(u_ 0\) satisfy (H), \(0<m<P\), \(1<P\), and g satisfies A then if \(u_ 0^ m\in B\) (a certain unstable set) then \(u^ m\in B\) for \(0\leq t<T_{\max}\), where \(T_{\max}\) is finite with computable upper bound.
Reviewer: B.D.Sleeman

35K57 Reaction-diffusion equations
35B40 Asymptotic behavior of solutions to PDEs
Full Text: EuDML
[1] ARONSON D. G., CRANDALL M. G., PELETIER L. A.: Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Analysis, 6, 1982, 1001-1022. · Zbl 0518.35050
[2] BALL J. M.: Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Quart. J. Math. Oxford, (2), 28, 1977, 473-486. · Zbl 0377.35037
[3] BERGER M. S.: Nonlinearity and functional analysis. Academic Press 1977. · Zbl 0368.47001
[4] FILA M., FILO J.: Stabilization of solutions of certain one-dimensional degentrate diffusion equations. Math. Slovaca 37, 1987, 217-229. · Zbl 0619.35064
[5] FILO J.: On solutions of a perturbed fast diffusion equation. Aplikace matematiky 32, 1987, 364-380. · Zbl 0652.35064
[6] FRIEDMAN A.: Partial differential equations of parabolic type. Prentice-Hall, N.J. 1964. · Zbl 0144.34903
[7] FRIEDMAN A.: Partial differential equations. Holt, Rinehart and Winston, New York 1969. · Zbl 0224.35002
[8] FUJITA H.: On the blowing up of solutions of the Cauchy problem for \(u_t = \bigtriangleup u + u^{1+a}.\). J. Fac. Sci. Univ. Tokyo, Sect. 1A 13, 1966, 109-124.
[9] GALAKTIONOV V. A.: A boundary value problem for the nonlinear parabolic equation \(u_t = \Delta u^{1+\alpha} + u^\beta\). Differential equations 17, 1981, 551-555 · Zbl 0478.35058
[10] LADYZENSKAJA O. A., SOLONNIKOV V. A., URALCEVA N. N.: Linear and quasilinear equations of parabolic type. Nauka, Moscow 1967.
[11] LEVINE H. A., SACKS P. E.: Some existence and nonexistence theorems for solutions of degenerate parabolic equations. J. Differential Equations 52, 1984, 135-161. · Zbl 0487.34003
[12] NAKAO M.: Existence, nonexistence and some asymptotic behaviour of global solutions of a nonlinear degenerate parabolic equation. Math. Rep. College of Gen. Edc, Kyushu Univ. 14, 1983, 1-21. · Zbl 0563.35038
[13] NAKAO M.: Lp-estimates of solution of some nonlinear degenerate diffusion equations. J. Math. Soc. Japan 37, 1985, 41-63. · Zbl 0569.35051
[14] SACKS P. E.: Continuity of solutions of a singular parabolic equation. Nonlinear Analysis 7, 1983, 387-409. · Zbl 0511.35052
[15] SATTINGER D. H., PAYNE L. E.: Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22, 1975, 273-303. · Zbl 0317.35059
[16] TSUTSUMI M.: Existence and nonexistence of global solutions for nonlinear parabolic equations. Publ. R.I.M.S., Kyoto Univ. 8, 1972/73, 211-229. · Zbl 0248.35074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.