Existence, uniqueness and asymptotic behavior for solutions of the nonlinear beam equation. (English) Zbl 0704.45013

Of concern is the existence, uniqueness and asymptotic behavior of solutions to an initial value problem for the second-order equation \[ Ku''(t)+A^ 2u(t)+M(| A^{1/2}u(t)|^ 2)\quad Au(t)+u'(t)=0,\quad t\geq 0, \] in a Hilbert space H. Here \(| \cdot |\) denotes the norm in H, K: \(H\to H\) is linear monotone, A is a given linear unbounded operator of H, and M is a real function on \([0,\infty)\). The author extends earlier results by P. Biler [ibid. 10, 839-842 (1986; Zbl 0611.35057)], and E. H. Brito [ibid. 8, 1489-1496 (1984; Zbl 0524.35026); ibid. 11, 125-137 (1987; Zbl 0613.34013)].
Reviewer: S.Aizicovici


45N05 Abstract integral equations, integral equations in abstract spaces
45K05 Integro-partial differential equations
34G20 Nonlinear differential equations in abstract spaces
35L70 Second-order nonlinear hyperbolic equations
Full Text: DOI


[1] Ball, J. M., Initial-boundary value problems for an extensible beam, J. math. Analysis Applic., 42, 61-90 (1973) · Zbl 0254.73042
[2] Ball, J. M., Stability theory for an extensible beam, J. diff. Eqns., 14, 399-418 (1973) · Zbl 0247.73054
[3] Biler, P., Remark on the decay for damped string and beam equations, Nonlinear Analysis, 10, 839-842 (1986) · Zbl 0611.35057
[4] Brito, E. H., Decay estimates for generalized damped extensible string and beam equation, Nonlinear Analysis, 8, 1489-1496 (1984) · Zbl 0524.35026
[5] Brito, E. H., Nonlinear initial-boundary value problems, Nonlinear Analysis, 11, 125-137 (1987) · Zbl 0613.34013
[6] Burgreen, D., Free vibrations of a pin-ended column with constant distance between pin ends, J. appl. Mech., 18, 135-139 (1951)
[7] Dickey, R. W., Free vibrations and dynamic buckling of extensible beam, J. math. Analysis Applic., 29, 443-454 (1970) · Zbl 0187.04803
[8] Eisley, J. G., Nonlinear vibrations of beams and rectangular plates, Z. angew. Math. Phys., 15, 167-175 (1964) · Zbl 0133.19101
[9] Lima, O. A., Existĕncia e unicidade de soluções fracas de uma equação hiperbólica-parabólica não linear, Doctoral Thesis (1986), UFRJ
[10] Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[11] Medeiros, L. A., On a new class of nonlinear wave equations, J. math. Applic., 69, 252-262 (1979) · Zbl 0407.35051
[12] Menzala, G. P., On global classical solutions of a non-linear wave equation, J. appl. Analysis, 10, 179-195 (1980) · Zbl 0441.35037
[13] Mikhlin, S. G., Variational Methods in Mathematical Physics (1964), Pergamon Press: Pergamon Press Oxford · Zbl 0119.19002
[14] Milla Miranda, M., Notas de aula sobre Teoria Espectral (1986), IM-UFRJ: IM-UFRJ Rio de Janeiro
[15] Nakao, M., Asymptotic stability of the bounded or almost periodic solution of the wave equation with nonlinear dissipative term, J. math. Analysis Applic., 58, 336-343 (1977) · Zbl 0347.35013
[16] Nakao, M., Decay of solutions for some nonlinear evolution equations, J. math. Analysis Applic., 60, 542-549 (1977) · Zbl 0376.34051
[17] Visik, M. I.; Ladyzhenskaya, O. A., On boundary value problems for PDE and certain class of operators equations, A.M.S. Trasl. Serie, 2, 10 (1958)
[18] Woinowsky-Krieger, S., The effect of axial force on the vibration of hinged bars, J. appl. Mech., 17, 35-36 (1950) · Zbl 0036.13302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.