zbMATH — the first resource for mathematics

Discrete smoothing splines and digital filtration. Theory and applications. (English) Zbl 0704.65005
The paper deals with theoretical and applied aspects of discrete smoothing splines and digital filtration. Its aim is to prove the close interconnection between two smoothing approaches, to develop the transfer function which characterizes the smoothing spline as a filter in terms of \(\alpha\) and \(\lambda_ K\) (the eigenvalues of the discrete analogue of \({\mathcal L})\), and to develop the reduction ratio between the original and smoothed data in the same terms. \((\alpha >0\) is the smoothing parameter and \({\mathcal L}:\) \(W^{2,\nu}\to L_ 2\) is a linear bounded operator). Five physical examples are discussed (sinusoidal wave, saw-like waves, rectangular pulse train, etc.)
Reviewer: M.Gaşpar (Iaşi)

65D10 Numerical smoothing, curve fitting
65K10 Numerical optimization and variational techniques
41A15 Spline approximation
65D07 Numerical computation using splines
93E11 Filtering in stochastic control theory
93E14 Data smoothing in stochastic control theory
[1] P. M. Anselone P.-J. Laurent: A general method for the construction of interpolating or smoothing spline functions. Num. Math. 12 (1968) No. 1, 66-82. · Zbl 0197.13501
[2] P. Bečička J. Hřebíček F. Šik: Numerical analysis of smoothing splines. (Czech). Proceed. 9-th Symposium on Algorithms ALGORITMY 87, JSMF, Bratislava. 1987, 22-24.
[3] K. Böhmer: Spline-Funktionen. Teubner, Stuttgart, 1974. · Zbl 0278.41013
[4] E. O. Brigham: The Fast Fourier Transform. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974. · Zbl 0375.65052
[5] C. S. Burrus T. W. Parks: DFT/FFT and Convolution Algorithms. Wiley Interscience, 1985. · Zbl 0646.65099
[6] P. Craven G. Wahba: Smoothing Noisy Data with Spline Functions. Numer. Math. 31 (1979), 377-403. · Zbl 0377.65007
[7] D. F. Elliot K. R. Rao: Fast transforms. Algorithms, Analyses, Applications. Acad. Press, New York, London, 1982. · Zbl 0562.65097
[8] W. Gautschi: Attenuation Factors in Practical Fourier Analysis. Num. Math. 18 (1972), 373-400. · Zbl 0231.65101
[9] M. H. Gutknecht: Attenuation factors in multivariate Fourier analysis. Num. Math. 51 (1987), 615-629. · Zbl 0639.65079
[10] J. Hřebíček F. Šik V. Veselý: Digital convolution filters and smoothing splines. Proceed. 2nd ISNA (I. Marek, Prague 1987, Teubner, Leipzig, 1988, 187-193.
[11] J. Hřebíček F. Šik V. Veselý: How to choose the smoothing parameter of a periodic smoothing spline.
[12] J. Hřebíček F. Šik P. Švenda V. Veselý: Smoothing splines and digital filtration. Research Report, Czechoslovak Academy of Sciences, Institute of Physical Metallurgy, Brno, 1987. · Zbl 0704.65005
[13] L. V. Kantorovič V. I. Krylov: Approximate methods of higher analysis. (in Russian). 4. Moskva, 1952. · Zbl 0046.34202
[14] P. J. Laurent: Approximation et Optimisation. Hermann, Paris, 1972. · Zbl 0238.90058
[15] F. Locher: Interpolation on uniform meshes by the translates of one function and related attenuation factors. Math. Comput. 37 (1981) No. 156, 403 - 416. · Zbl 0517.42004
[16] M. Marcus H. Minc: A survey of matrix theory and matrix inequalities. Boston 1964 · Zbl 0126.02404
[17] H. J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms. 2nd, Springer, Berlin, Heidelberg, New York, 1982.
[18] V. A. Vasilenko: Spline-Functions: Theory, Algorithms, Programs. (in Russian). Nauka, Novosibirsk, 1983. · Zbl 0529.41013
[19] J. Hřebíček F. Šik V. Veselý: Smoothing by discrete splines and digital convolution filters. (Czech). Proceed Conf. Numer. Methods in the Physical Metallurgy (J. Hřebíček Blansko 1988, ÚFM ČSAV Brno 1988, 62-70. · Zbl 0681.65006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.