zbMATH — the first resource for mathematics

Linear algorithms for radioelectric spectrum forecast. (English) Zbl 07042391
Summary: This paper presents the development and evaluation of two linear algorithms for forecasting reception power for different channels at an assigned spectrum band of global systems for mobile communications (GSM), in order to analyze the spatial opportunity for reuse of frequencies by secondary users (SUs) in a cognitive radio (CR) network. The algorithms employed correspond to seasonal autoregressive integrated moving average (SARIMA) and generalized autoregressive conditional heteroskedasticity (GARCH), which allow for a forecast of channel occupancy status. Results are evaluated using the following criteria: availability and occupancy time for channels, different types of mean absolute error, and observation time. The contributions of this work include a more integral forecast as the algorithm not only forecasts reception power but also the occupancy and availability time of a channel to determine its precision percentage during the use by primary users (PUs) and SUs within a CR system. Algorithm analyses demonstrate a better performance for SARIMA over GARCH algorithm in most of the evaluated variables.
94 Information and communication theory, circuits
62 Statistics
Full Text: DOI
[1] Pedraza, L.; Forero, F.; Paez, I.; Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia; Ingeniería Ciencia: 2014; Volume 10 ,127-143.
[2] Pedraza, L.; Hernandez, C.; Paez, I.; Evaluation of nonlinear forecasts for radioelectric spectrum; Int. J. Eng. Technol.: 2016; Volume 8 ,1611-1626.
[3] Gorcin, A.; Celebi, H.; Qaraqe, K.A.; Arslan, H.; An autoregressive approach for spectrum occupancy modeling and prediction based on synchronous measurements; Proceedings of the International Symposium on Personal Indoor and Mobile Radio Communications: ; ,705-709.
[4] Pedraza, L.; ; Redes Inalámbricas Mesh “Caso de Estudio: Ciudad Bolívar”: Bogota, Colombia 2012; .
[5] Pedraza, L.; Hernandez, C.; Galeano, K.; Rodriguez, E.; Paez, I.; ; Ocupación Espectral y Modelo de Radio Cognitiva Para Bogotá: Bogota, Colombia 2016; .
[6] Wellens, M.; Riihijarvi, J.; Mahonen, P.; Empirical time and frequency domain models of spectrum use; Phys. Commun.: 2009; Volume 2 ,10-32.
[7] Song, C.; Chen, D.; Zhang, Q.; Understand the predictability of wireless spectrum: A large-scale empirical study; Proceedings of the International Conference on Communications: ; ,1-5.
[8] Sun, Z.; Laneman, J.N.; Bradford, G.J.; Sequence detection algorithms for dynamic spectrum access networks; Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum: ; ,1-9.
[9] Fadda, M.; Popescu, V.; Murroni, M.; Angueira, P.; Morgade, J.; On the feasibility of unlicensed communications in the TV white space: Field measurements in the UHF band; Int. J. Digit. Multimed. Broadcast.: 2015; Volume 2015 ,1-8.
[10] Lopez, M.; Casadevall, F.; Time-dimension models of spectrum usage for the analysis, design, and simulation of cognitive radio networks; IEEE Trans. Veh. Technol.: 2013; Volume 62 ,2091-2104.
[11] Yarkan, S.; Arslan, H.; Binary time series approach to spectrum prediction for cognitive radio; Proceedings of the Vehicular Technology Conference: ; ,1563-1567.
[12] Black, T.; Kerans, B.; Kerans, A.; Implementation of hidden markov model spectrum prediction algorithm; Proceedings of the International Symposium on Communications and Information Technologies: ; ,280-283.
[13] Li, Y.; Dong, Y.; Zhang, H.; Zhao, H.; Shi, H.; Zhao, X.; Spectrum usage prediction based on high-order markov model for cognitive radio networks; Proceedings of the International Conference on Computer and Information Technology: ; ,2784-2788.
[14] Yu, C.; He, Y.; Quan, T.; Frequency Spectrum Prediction Method Based on EMD and SVR; Proceedings of the Intelligent Systems Design and Applications: ; ,39-44.
[15] Wang, Z.; Salous, S.; Time series arima model of spectrum occupancy for cognitive radio; Proceedings of the Seminar on Cognitive Radio and Software Defined Radios: Technologies and Techniques: ; ,1-4.
[16] Chen, Y.; Oh, H.S.; A Survey of Measurement-based Spectrum Occupancy Modeling for Cognitive Radios; IEEE Commun. Surv. Tutor.: 2014; ,1-36.
[17] Anand, N.C.; Scoglio, C.; Natarajan, B.; GARCH—Non-linear time series model for traffic modeling and prediction; Proceedings of the IEEE Network Operations and Management Symposium: ; ,694-697.
[18] Tran, Q.; Ma, Z.; Li, H.; Trinh, Q.; A Multiplicative Seasonal ARIMA/GARCH Model in EVN Traffic Prediction; Int. J. Commun. Netw. Syst. Sci.: 2015; Volume 8 ,43-49.
[19] Zhanga, Y.; Fay, D.; Kilmartin, L.; Moore, A.; A Garch-based adaptive playout delay algorithm for VoIP; Comput. Netw.: 2010; Volume 54 ,3108-3122.
[20] Hyndman, R.; Koehler, A.B.; Ord, J.K.; Snyder, R.D.; ; Forecasting with Exponential Smoothing: The State Space Approach: Berlin/Heidelberg, Germany 2008; . · Zbl 1211.62165
[21] Stolojescu-Crisan, C.; Data mining based wireless network traffic forecasting; Proceedings of the International Symposium on Electronics and Telecommunications: ; ,115-118.
[22] Hyndman, R.J.; Another look at forecast-accuracy metrics for intermittent demand; Foresight Int. J. Appl. Forecast.: 2006; ,43-46.
[23] Box, G.; Jenkins, G.; Reinsel, C.; ; Time Series Analysis: Forecasting and Control: Hoboken, NJ, USA 2008; . · Zbl 1154.62062
[24] Tran, V.G.; Debusschere, V.; Bacha, S.; Hourly server workload forecasting up to 168 hours ahead using Seasonal ARIMA model; Proceedings of the IEEE International Conference on Industrial Technology: ; ,1127-1131.
[25] Permanasari, A.E.; Hidayah, I.; Bustoni, I.; SARIMA (Seasonal ARIMA) implementation on time series to forecast the number of Malaria incidence; Proceedings of the International Conference on Information Technology and Electrical Engineering: ; ,203-207.
[26] Pedraza, L.; Hernandez, C.; Rodriguez, E.; Modeling of GSM Spectrum Based on Seasonal ARIMA model; Proceedings of the 6th IEEE Latin-American Conference on Communications: ; ,1-4.
[27] Engle, R.; The Use of ARCH/GARCH Models in Applied Econometrics; J. Econ. Perspect.: 1982; Volume 15 ,157-168.
[28] Bollersleva, T.; Generalized autoregressive conditional heteroskedasticity; J. Econom.: 1986; Volume 31 ,307-327.
[29] Chinomona, A.; Time Series Modelling with Application to South African Inflation Data; Master’s Thesis: Pietermaritzburg, South Africa 2009; .
[30] Edward, N.; Modelling and Forecasting Using Time Series Garch Models: An Application of Tanzania Inflation Rate Data; Master’s Thesis: Dar es Salaam, Tanzania 2011; .
[31] Talke, I.; Modelling Volatility in Time Series Data; Master’s Thesis: Pietermaritzburg, South Africa 2003; .
[32] Pedraza, L.; Forero, F.; Paez, I.; Metropolitan Spectrum Survey in Bogota Colombia; Proceedings of the IEEE International Conference on Advanced Information Networking and Applications Workshops: ; ,548-553.
[33] Lopez, M.; Casadevall, F.; Methodological aspects of spectrum occupancy evaluation in the context of cognitive radio; Eur. Trans. Telecommun.: 2010; Volume 21 ,680-693.
[34] ; Report ITU-R SM.2256, Spectrum Occupancy Measurements and Evaluation: Geneva, Switzerland 2012; .
[35] Digham, F.; Alouini, M.S.; Simon, M.; On the Energy Detection of Unknown Signals Over Fading Channels; IEEE Trans. Commun.: 2007; Volume 55 ,21-24.
[36] Dickey, D.A.; Fuller, W.A.; Distribution of estimators for autoregressive time series with a unit root; J. Am. Stat. Assoc.: 1979; Volume 74 ,427-431. · Zbl 0413.62075
[37] Bozdogan, H.; Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions; Psychometrika: 1987; Volume 52 ,345-370. · Zbl 0627.62005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.