zbMATH — the first resource for mathematics

A domain decomposition non-intrusive reduced order model for turbulent flows. (English) Zbl 1411.76072
Summary: In this paper, a new domain decomposition non-intrusive reduced order model (DDNIROM) is developed for turbulent flows. The method works by partitioning the computational domain into a number of subdomains in such a way that the summation of weights associated with the finite element nodes within each subdomain is approximately equal, and the communication between subdomains is minimised. With suitably chosen weights, it is expected that there will be approximately equal accuracy associated with each subdomain. This accuracy is maximised by allowing the partitioning to occur through areas of the domain that have relatively little flow activity, which, in this case, is characterised by the pointwise maximum Reynolds stresses. A Gaussian process regression (GPR) machine learning method is used to construct a set of local approximation functions (hypersurfaces) for each subdomain. Each local hypersurface represents not only the fluid dynamics over the subdomain it belongs to, but also the interactions of the flow dynamics with the surrounding subdomains. Thus, in this way, the surrounding subdomains may be viewed as providing boundary conditions for the current subdomain. We consider a specific example of turbulent air flow within an urban neighbourhood at a test site in London and demonstrate the effectiveness of the proposed DDNIROM.

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
ParMETIS; PETSc; Scikit
Full Text: DOI
[1] Noack, B. R.; Stankiewicz, W.; Morzyński, M.; Schmid, P., Recursive dynamic mode decomposition of transient and post-transient wake flows, J Fluid Mech, 809, 843-872, (2016) · Zbl 1383.76122
[2] Xie, X.; Wells, D.; Wang, Z.; Iliescu, T., Approximate deconvolution reduced order modeling, Comput Methods Appl Mech Eng, 313, 512-534, (2017)
[3] Lorenzi, S.; Cammi, A.; Luzzi, L.; Rozza, G., POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations, Comput Methods Appl Mech Eng, 311, 151-179, (2016)
[4] Wang, Y.; Navon, I. M.; Wang, X.; Cheng, Y., 2D Burgers equation with large Reynolds number using POD/DEIM and calibration, Int J Numer Methods Fluids, 82, 12, 909-931, (2016)
[5] Noack, B. R.; Morzynski, M.; Tadmor, G., Reduced-order modelling for flow control, 528, (2011), Springer
[6] Bergmann, M.; Cordier, L., Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models, J Comput Phys, 227, 16, 7813-7840, (2008) · Zbl 1388.76073
[7] Dimitriu, G.; Apreutesei, N.; Ştefănescu, R., Numerical simulations with data assimilation using an adaptive POD procedure, Large-Scale Scientific Computing, 165-172, (2010), Springer · Zbl 1280.65006
[8] Oliver, J.; Caicedo, M.; Huespe, A.; Hernández, J.; Roubin, E., Reduced order modeling strategies for computational multiscale fracture, Comput Methods Appl Mech Eng, 313, 560-595, (2017)
[9] Dimitriu, G.; Stefanescu, R.; Navon, I. M., POD-DEIM approach on dimension reduction of a multi-species host-parasitoid system, Ann Acad Rom Sci Ser Math Appl, 7, 1, 173-188, (2015) · Zbl 06542730
[10] Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C.; Buchan, A. G.; Navon, I. M., Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons, Atmos Environ, 96, 96-106, (2014)
[11] Manzoni, A.; Salmoiraghi, F.; Heltai, L., Reduced Basis isogeometric methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils, Comput Methods Appl Mech Eng, 284, 1147-1180, (2015) · Zbl 1423.76181
[12] Ballarin, F.; Faggiano, E.; Ippolito, S.; Manzoni, A.; Quarteroni, A.; Rozza, G., Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization, J Comput Phys, 315, 609-628, (2016) · Zbl 1349.76173
[13] Schlegel, M.; Noack, B., On long-term boundedness of Galerkin models, J Fluid Mech, 765, 325-352, (2015) · Zbl 1336.76014
[14] Osth, J.; Noack, B. R.; Krajnovi, S.; Barros, D.; Bore, J., On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body, J Fluid Mech, 747, 518-544, (2014) · Zbl 1371.76085
[15] Franca, L. P.; Frey, S. L., Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 99, 2, 209-233, (1992) · Zbl 0765.76048
[16] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J Sci Comput, 32, 2737-2764, (2010) · Zbl 1217.65169
[17] Xiao, D.; Fang, F.; Du, J.; Pain, C. C.; Navon, I. M.; Buchan, A. G., Non-linear Petrov-Galerkin methods for reduced order modelling of the Navier-Stokes equations using a mixed finite element pair, Comput Methods Appl Mech Eng, 255, 147-157, (2013) · Zbl 1297.76107
[18] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C.; Navon, I. M.; Du, J., Non-linear model reduction for the Navier-Stokes equations using residual DEIM method, J Comput Phys, 263, 1-18, (2014) · Zbl 1349.76288
[19] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C.; Navon, I. M.; Muggeridge, A., Non-intrusive reduced order modelling of the Navier-Stokes equations, Comput Methods Appl Mech Eng, 293, 522-541, (2015)
[20] Xiao, D.; Fang, F.; Pain, C.; Navon, I. M., A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications, Comput Methods Appl Mech Eng, 317, 868-889, (2017)
[21] Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C.; Guo, Y., Model identification of reduced order fluid dynamics systems using deep learning, Int J Numer Methods Fluids, 86, 4, 255-268, (2018)
[22] Xiao, D.; Fang, F.; Pain, C.; Hu, G., Non-intrusive reduced order modelling of the navier-stokes equations based on RBF interpolation, Int J Numer Methods Fluids, 79, 11, 580-595, (2015)
[23] Xiao, D.; Yang, P.; Fang, F.; Xiang, J.; Pain, C.; Navon, I. M., Non-intrusive reduced order modeling of fluid-structure interactions, Comput Methods Appl Mech Eng, 303, 35-54, (2016)
[24] Xiao, D.; Lin, Z.; Fang, F.; Pain, C.; Navon, I. M.; Salinas, P., Non-intrusive reduced-order modeling for multiphase porous media flows using smolyak sparse grids, Int J Numer Methods Fluids, 83, 2, 205-219, (2017)
[25] Schwarz, H., Ueber einige abbildungsaufgaben, Journal für die reine und angewandte Mathematik, 70, 105-120, (1869) · JFM 02.0626.01
[26] Przemieniecki, J., Matrix structural analysis of substructures, AIAA, 1, 1, 138-147, (1963)
[27] Schur, I., Gesammelte Abhandlungen. Band II., (1973) · Zbl 0274.01054
[28] Schur, I., Vorlesungen über invariantentheorie, (1968) · Zbl 0159.03703
[29] Meurant, G., Domain decomposition methods for partial differential equations on parallel computers, Int J Supercomput Appl, 2, 4, 5-12, (1988)
[30] Quarteroni, A.; Valli, A., Domain decomposition methods for partial differential equations, (1999), Oxford Science Publications · Zbl 0931.65118
[31] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM · Zbl 1002.65042
[32] Pain, C.; Goddard, A., A neural network graph partitioning procedure for grid based domain decomposition, Int J Numer Methods Eng, 44, 593-613, (1999) · Zbl 0938.65143
[33] Lucia, D.; King, P.; Beran, P., Reduced order modeling of a two-dimensional flow with moving shocks, Comput Fluids, 32, 7, 917-938, (2003) · Zbl 1040.76042
[34] Lucia, D.; King, P.; Beran, P., Domain decomposition for reduced-order modeling of a flow with moving shocks, AIAA J, 40, 11, 2360-2362, (2002)
[35] Baiges, J.; Codina, R.; Idelsohn, S., A domain decomposition strategy for reduced order models. Application to the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 267, 23-42, (2013) · Zbl 1286.76028
[36] Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, S., A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics, Comput Methods Appl Mech Eng, 256, 169-188, (2013) · Zbl 1352.74285
[37] Amsallem, D.; Zahr, M.; Farhat, C., Nonlinear model order reduction based on local reduced-order bases, Int J Numer Methods Eng, 92, 10, 891-916, (2012) · Zbl 1352.65212
[38] Chaturantabut, S., Temporal localized nonlinear model reduction with a priori error estimate, Appl Numer Math, 119, 225-238, (2017) · Zbl 1368.65189
[39] Antil, H.; Heinkenschloss, M.; Hoppe, R.; Sorensen, D., Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables, Comput Vis Sci, 13, 6, 249-264, (2010) · Zbl 1220.65074
[40] Antil, H.; Heinkenschloss, M.; Hoppe, R., Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system, Optim Methods Softw, 26, 4-5, 643-669, (2011) · Zbl 1227.49046
[41] Xiao, D.; Fang, F.; Heaney, C.; Navon, I. M.; Pain, C., Domain decomposition for the non-intrusive reduced order modelling of fluid flow, Comput Methods Appl Mech Eng, (2019)
[42] Aristodemou, E.; Bentham, T.; Pain, C.; Colvile, R.; Robins, A.; ApSimon, H., A comparison of mesh-adaptive LES with wind tunnel data for flow past buildings: Mean flows and velocity fluctuations, Atmos Environ, 43, 39, 6238-6253, (2009)
[43] Song, J.; Fan, S.; Lin, W.; Mottet, L.; Woodward, H.; Wykes, M. D., Natural ventilation in cities: the implications of fluid mechanics, Build Res Inf, 46, 8, 809-828, (2018)
[44] Xiao, D.; Heaney, C.; Mottet, L.; Fang, F.; Lin, W.; Navon, I. M., A reduced order model for turbulent urban flows using machine learning, Build Environ, 148, 323-337, (2019)
[45] Pinnau, R., Model reduction via proper orthogonal decomposition, 95-109, (2008), Springer Berlin Heidelberg · Zbl 1154.93012
[46] Sirovich, L., Turbulence and the dynamics of coherent structures, part III: dynamics and scaling, Q Appl Math, XLV, 583-590, (1987) · Zbl 0676.76047
[47] Rasmussen, C.; Williams, C., Gaussian processes for machine learning, (2006), The MIT Press · Zbl 1177.68165
[48] Rasmussen, C., Gaussian processes in machine learning, Advanced lectures on machine learning, 63-71, (2004), Springer · Zbl 1120.68436
[49] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O., Scikit-learn: machine learning in python, J Mach Learn Res, 12, 2825-2830, (2011) · Zbl 1280.68189
[50] Karypis, G.; Kumar, V., Multilevel k-way partitioning scheme for irregular graphs, J Parallel Distrib Comput, 48, 1, 96-129, (1998)
[51] Karypis, G.; Schloegel, K.; Kumar, V., ParMetis: Parallel Graph Partitioning and Sparse Matrix Ordering Library, (1997)
[52] Pavlidis, D.; Gorman, G. J.; Gomes, J. L.M. A.; Pain, C. C.; ApSimon, H., Synthetic-eddy method for urban atmospheric flow modelling, Boundary Layer Meteorol, 136, 285-299, (2010)
[53] Pain, C.; Piggott, M.; Goddard, A.; Fang, F.; Gorman, G.; Marshall, D., Three-dimensional unstructured mesh ocean modelling, Ocean Modell, 10, 1-2, 5-33, (2005)
[54] Fluidity Version 4.1.12; 2015. 10.6084/m9.figshare.1387713.
[55] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K., PETSc Users Manual, Tech. Rep. ANL-95/11 - Revision 3.10, (2018), Argonne National Laboratory
[56] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing, (1997), Birkhauser Press), 163-202 · Zbl 0882.65154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.