×

Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) hfbtho (v3.00): a new version of the program. (English) Zbl 1411.81017

Summary: We describe the new version 3.00 of the code hfbtho that solves the nuclear Hartree-Fock (HF) or Hartree-Fock-Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle-hole and particle-particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck, (iv) the regularization of zero-range pairing forces, (v) the calculation of localization functions, (vi) a MPI interface for large-scale mass table calculations.

MSC:

81-04 Software, source code, etc. for problems pertaining to quantum theory
81V35 Nuclear physics

Software:

LAPACK; hfbtho; hfodd
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Stoitsov, M.; Dobaczewski, J.; Nazarewicz, W.; Ring, P., Comput. Phys. Comm., 167, 43, (2005)
[2] Stoitsov, M., Comput. Phys. Comm., 184, 1592, (2013)
[3] Dechargé, J.; Gogny, D., Phys. Rev. C, 21, 1568, (1980)
[4] Berger, J. F.; Girod, M.; Gogny, D., Comput. Phys. Comm., 63, 365, (1991)
[5] Chappert, F.; Girod, M.; Hilaire, S., Phys. Lett. B, 668, 420, (2008)
[6] Dobaczewski, J.; Flocard, H.; Treiner, J., Nuclear Phys. A, 422, 103, (1984)
[7] Chappert, F.; Pillet, N.; Girod, M.; Berger, J.-F., Phys. Rev. C, 91, 034312, (2015)
[8] Younes, W., Comput. Phys. Comm., 180, 1013, (2009)
[9] Schunck, N.; Robledo, L. M., Rep. Progr. Phys., 79, 116301, (2016)
[10] Ring, P.; Schuck, P., The Nuclear Many-Body Problem, (2000), Springer-Verlag
[11] Ring, P.; Schuck, P., Nuclear Phys. A, 292, 20, (1977)
[12] Baranger, M.; Veneroni, M., Ann. Phys., 114, 123, (1978)
[13] N. Schunck, et al., 2017.
[14] Bulgac, A., Phys. Rev. C, 65, 051305(R), (2002)
[15] Bennaceur, K.; Dobaczewski, J., Comput. Phys. Comm., 168, 96, (2005)
[16] Borycki, P.; Dobaczewski, J.; Nazarewicz, W.; Stoitsov, M., Phys. Rev. C, 73, 044319, (2006)
[17] Becke, A. D.; Edgecombe, K. E., J. Phys. Chem., 92, 5397, (1990)
[18] Savin, A.; Nesper, R.; Wengert, S.; Fässler, T. F., Angew. Chem., Int. Ed. Engl., 36, 1808, (1997)
[19] Scemama, A.; Chaquin, P.; Caffarel, M., J. Chem. Phys., 121, 1725, (2004)
[20] Kohout, M., Int. J. Quantum Chem., 97, 651, (2004)
[21] Burnus, T.; Marques, M. A.; Gross, E. K., Phys. Rev. A, 71, 010501, (2005)
[22] Poater, J.; Duran, M.; Sola, M.; Silvi, B., Chem. Rev., 105, 3911, (2005)
[23] Reinhard, P.-G.; Maruhn, J.; Umar, A.; Oberacker, V., Phys. Rev. C, 83, 034312, (2011)
[24] Zhang, C., Phys. Rev. C, 94, 064323, (2016)
[25] Yao, W.-M., J. Phys. G: Nucl. Part. Phys., 33, 1, (2006)
[26] Friar, J. L.; Martorell, J.; Sprung, D. W.L., Phys. Rev. A, 56, 4579, (1997)
[27] Schunck, N., Comput. Phys. Comm., 183, 166, (2012)
[28] Schunck, N.; Duke, D.; Carr, H.; Knoll, A., Phys. Rev. C, 90, 054305, (2014)
[29] Schunck, N.; McDonnell, J. D.; Higdon, D.; Sarich, J.; Wild, S. M., Eur. Phys. J. A, 51, 1, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.