×

zbMATH — the first resource for mathematics

TRPL+K: thick-restart preconditioned Lanczos+K method for large symmetric eigenvalue problems. (English) Zbl 1431.65047
MSC:
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A18 Eigenvalues, singular values, and eigenvectors
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J. Baglama and L. Reichel, Augmented implicitly restarted Lanczos bidiagonalization methods, SIAM J. Sci. Comput., 27 (2005), pp. 19–42. · Zbl 1087.65039
[2] D. Calvetti, L. Reichel, and D. C. Sorensen, An implicitly restarted Lanczos method for large symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 2 (1994), p. 21. · Zbl 0809.65030
[3] A. Chapman and Y. Saad, Deflated and augmented Krylov subspace techniques, Numer. Linear Algebra Appl., 4 (1997), pp. 43–66.
[4] J. Chen, L. Wu, K. Audhkhasi, B. Kingsbury, and B. Ramabhadrari, Efficient one-vs.-one kernel ridge regression for speech recognition, in Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, 2016, pp. 2454–2458.
[5] M. Crouzeix, B. Philippe, and M. Sadkane, The Davidson method, SIAM J. Sci. Comput., 15 (1994), pp. 62–76. · Zbl 0803.65042
[6] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87–94. · Zbl 0293.65022
[7] E. de Sturler, Nested Krylov methods based on GCR, J. Comput. Appl. Math., 67 (1996), pp. 15–41. · Zbl 0854.65026
[8] E. de Sturler, Truncation strategies for optimal Krylov subspace methods, SIAM J. Matrix Anal. Appl., 36 (1999), pp. 864–889. · Zbl 0960.65031
[9] A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303–353. · Zbl 0928.65050
[10] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, MD, 1996. · Zbl 0865.65009
[11] G. H. Golub and Q. Ye, An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM J. Sci. Comput., 24 (2002), pp. 312–334. · Zbl 1016.65017
[12] C. Greif, S. He, and P. Liu, SYM-ILDL: Incomplete \(LDL^\top\) Factorization of Symmetric Indefinite and Skew-Symmetric Matrices, CoRR, , 2015.
[13] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed., Morgan Kaufmann, San Francisco, CA, 2011. · Zbl 1230.68018
[14] V. Hernandez, J. Roman, A. Tomas, and V. Vidal, Lanczos Methods in SLEPc, SLEPc Technical Report STR-5, Universidad Politécnica de Valencia, Valencia, Spain, 2006.
[15] C.-J. Hsieh and P. Olsen, Nuclear norm minimization via active subspace selection, in Proceedings of the 31st International Conference on Machine Learning, 2014, pp. 575–583.
[16] V. Kalantzis, R. Li, and Y. Saad, Spectral Schur complement techniques for symmetric eigenvalue problems, Electron. Trans. Numer. Anal., 45 (2016), pp. 305–329. · Zbl 1352.65118
[17] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541. · Zbl 0992.65028
[18] A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov, Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSC, SIAM J. Sci. Comput., 29 (2007), pp. 2224–2239. · Zbl 1149.65026
[19] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bureau Standards Sec. B, 45 (1950), pp. 255–282.
[20] R. Li, Y. Xi, E. Vecharynski, C. Yang, and Y. Saad, A thick-restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems, SIAM J. Sci. Comput., 38 (2016), pp. A2512–A2534. · Zbl 1348.65071
[21] X. Liu, Z. Wen, and Y. Zhang, Limited memory block Krylov subspace optimization for computing dominant singular value decompositions, SIAM J. Sci. Comput., 35 (2013), pp. A1641–A1668.
[22] R. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems, Math. Comp., 65 (1996), pp. 1213–1230. · Zbl 0857.65041
[23] R. B. Morgan and D. S. Scott, Generalizations of Davidsons method for computing eigenvalues of sparse symmetric matrices, SIAM J. Sci. Comput., 7 (1986), pp. 817–825. · Zbl 0602.65020
[24] R. B. Morgan and D. S. Scott, Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems, SIAM J. Sci. Comput., 14 (1993), pp. 585–593. · Zbl 0791.65022
[25] C. W. Murray, S. C. Racine, and E. R. Davidson, Improved algorithms for the lowest few eigenvalues and associated eigenvectors of large matrices, J. Comput. Phys., 103 (1992), pp. 382–389. · Zbl 0766.65037
[26] J. Olsen, P. Jørgensen, and J. Simons, Passing the one-billion limit in full configuration-interaction (FCI) calculations, Chem. Phys. Lett., 169 (1990), pp. 463–472.
[27] C. C. Paige, Computational variants of the Lanczos method for the eigenproblem, IMA J. Appl. Math., 10 (1972), pp. 373–381. · Zbl 0253.65020
[28] C. C. Paige, Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, IMA J. Appl. Math., 18 (1976), pp. 341–349. · Zbl 0347.65018
[29] C. C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem, Linear Algebra Appl., 34 (1980), pp. 235–258. · Zbl 0471.65017
[30] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[31] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, Manchester, UK, 1992.
[32] G. L. Sleijpen and H. A. Van der Vorst, A Jacobi–Davidson iteration method for linear eigenvalue problems, SIAM Rev., 42 (2000), pp. 267–293.
[33] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357–385. · Zbl 0763.65025
[34] A. Stathopoulos, Nearly optimal preconditioned methods for Hermitian eigenproblems under limited memory. Part I: Seeking one eigenvalue, SIAM J. Sci. Comput., 29 (2007), pp. 481–514. · Zbl 1137.65019
[35] A. Stathopoulos and C. F. Fischer, A Davidson program for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric matrix, Comput. Phys. Commun., 79 (1994), pp. 268–290. · Zbl 0878.65029
[36] A. Stathopoulos and Y. Saad, Restarting techniques for the (Jacobi-) Davidson symmetric eigenvalue methods, Electron. Trans. Numer. Anal., 7 (1998), pp. 163–181. · Zbl 0912.65027
[37] A. Stathopoulos, Y. Saad, and K. Wu, Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods, SIAM J. Sci. Comput., 19 (1998), pp. 227–245. · Zbl 0924.65028
[38] D. B. Szyld and F. Xue, Preconditioned eigensolvers for large-scale nonlinear Hermitian eigenproblems with variational characterizations. I. Extreme eigenvalues, Math. Comp., 85 (2016), pp. 2887–2918, . · Zbl 1344.65045
[39] H. A. van der Vorst, Computational methods for large eigenvalue problems, in Handbook of Numerical Analysis, Handb. Numer. Anal. 8, North-Holland, Amsterdam, 2002, pp. 3–179.
[40] E. Vecharynski, C. Yang, and J. E. Pask, A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix, J. Comput. Phys., 290 (2015), pp. 73–89. · Zbl 1349.65133
[41] E. Vecharynski, C. Yang, and F. Xue, Generalized preconditioned locally harmonic residual method for non-Hermitian eigenproblems, SIAM J. Sci. Comput., 38 (2016), pp. A500–A527, . · Zbl 06548924
[42] C. Vömel, S. Z. Tomov, O. A. Marques, A. Canning, L.-W. Wang, and J. J. Dongarra, State-of-the-art eigensolvers for electronic structure calculations of large scale nano-systems, J. Comput. Phys., 227 (2008), pp. 7113–7124. · Zbl 1141.82346
[43] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 602–616. · Zbl 0969.65030
[44] L. Wu, P.-Y. Chen, I. E.-H. Yen, F. Xu, Y. Xia, and C. Aggarwal, Scalable spectral clustering using random binning features, in Proceedings of the 24nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018, pp. 2506–2515.
[45] L. Wu, J. Laeuchli, V. Kalantzis, A. Stathopoulos, and E. Gallopoulos, Estimating the trace of the matrix inverse by interpolating from the diagonal of an approximate inverse, J. Comput. Phys., 326 (2016), pp. 828–844. · Zbl 1422.65069
[46] L. Wu, E. Romero, and A. Stathopoulos, PRIMME\(\_\)SVDS: A high-performance preconditioned svd solver for accurate large-scale computations, SIAM J. Sci. Comput., 39 (2017), pp. S248–S271.
[47] L. Wu and A. Stathopoulos, A preconditioned hybrid SVD method for accurately computing singular triplets of large matrices, SIAM J. Sci. Comput., 37 (2015), pp. S365–S388. · Zbl 1325.65055
[48] L. Wu, K. J. Wu, A. Sim, M. Churchill, J. Y. Choi, A. Stathopoulos, C.-S. Chang, and S. Klasky, Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma, IEEE Trans. Big Data, 2 (2016), pp. 262–275.
[49] L. Wu, I. E. Yen, J. Chen, and R. Yan, Revisiting random binning features: Fast convergence and strong parallelizability, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1265–1274.
[50] C. Yang, Solving large-scale eigenvalue problems in SciDAC applications, J. Phys. Conf. Ser., 16 (2005), pp. 425–434.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.