zbMATH — the first resource for mathematics

Geostatistical simulation of geochemical compositions in the presence of multiple geological units: application to mineral resource evaluation. (English) Zbl 1411.86013
Summary: An accurate prediction of benefit in ore deposits with heterogeneous spatial variations requires the definition of geological domains that differentiate the types of mineralogy, alteration, and lithology, as well as the prediction of full mineral and geochemical compositions within each modeled domain and across boundaries between different domains. This paper proposes and compares various approaches (different combinations of log-ratio transformation, Gaussian and flow anamorphosis, and deterministic or probabilistic geological models) for geostatistical simulation of geochemical compositions in the presence of several geological domains. Different approaches are illustrated through an application to a nickel-cobalt laterite deposit located in Western Australia. Four rock types (ferruginous, smectite, saprolite, and ultramafic) are considered to define compositionally homogeneous domains. Geochemical compositions are comprised of six different components of interest (Fe, Al, Mg, Ni, Co, and Filler). The results suggest that the flow anamorphosis is a vital element for geostatistical modeling of geochemical composition due to its invariance properties and capability for reproducing complex patterns in input data, including: presence of outliers, presence of several populations (due to the presence of several geological domains), nonlinearity, and heteroscedasticity.

86A32 Geostatistics
62H11 Directional data; spatial statistics
Full Text: DOI
[1] Aitchison, J., The statistical analysis of compositional data (with discussion), J R Stat Soc B Methodol, 44, 139-177, (1982) · Zbl 0491.62017
[2] Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability. Chapman & Hall, London. Reprinted in 2003 with additional material by The Blackburn Press · Zbl 0688.62004
[3] Alabert, F., The practice of fast conditional simulations through the LU decomposition of the covariance matrix, Math Geol, 19, 369-386, (1987)
[4] Alabert FG (1987b) Stochastic imaging of spatial distributions using hard and soft information. MSc thesis, Stanford University, Stanford, CA
[5] Armstrong M, Galli A, Beucher H, Le Loc’h G, Renard D, Doligez B, Eschard R, Geffroy F (2011) Plurigaussian simulations in geosciences. Springer, Berlin
[6] Bandarian, EM; Bloom, LM; Mueller, UA, Direct minimum/maximum autocorrelation factors within the framework of a two structure linear model of coregionalisation, Comput Geosci, 34, 190-200, (2008)
[7] Boisvert, JB; Rossi, ME; Ehrig, K.; Deutsch, CV, Geometallurgical modeling at Olympic dam mine, South Australia, Math Geosci, 45, 901-925, (2013)
[8] Buccianti A, Pawlowsky-Glahn V, Barceló-Vidal C, Jarauta-Bragulat E (1999) Visualization and modeling of natural trends in ternary diagrams: a geochemical case study. In: Lippard SJ, Naess A, Sinding-Larsen R (eds) IAMG’99: proceedings of the 5th annual conference of the International Association for Mathematical Geology, Trondheim, Norway, August 1999, pp 139-144
[9] Camuti KS, Riel RG (1996) Mineralogy of the Murrin Murrin nickel laterites. In: Grimsey EJ, Neuss I (eds) Proceedings of Nickel ’96: mineral to market, Kalgoorlie, Western Australia, November 1996. AusIMM, Melbourne, pp 209-210
[10] Chilès JP, Delfiner P (2012) Geostatistics: modeling spatial uncertainty. Wiley, New York · Zbl 1256.86007
[11] Desbarats, AJ; Dimitrakopoulos, R., Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors, Math Geol, 32, 919-942, (2000)
[12] Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide. Oxford University Press, New York, NY
[13] Egozcue, JJ; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C., Isometric logratio transformations for compositional data analysis, Math Geol, 35, 279-300, (2003) · Zbl 1302.86024
[14] Emery, X., Simulation of geological domains using the plurigaussian model: new developments and computer programs, Comput Geosci, 33, 1189-1201, (2007)
[15] Emery, X., A turning bands program for conditional co-simulation of cross-correlated Gaussian random fields, Comput Geosci, 34, 1850-1862, (2008)
[16] Emery, X.; González, KE, Probabilistic modelling of lithological domains and it application to resource evaluation, J S Afr Inst Min Metall, 107, 803-809, (2007)
[17] Emery, X.; González, KE, Incorporating the uncertainty in geological boundaries into mineral resources evaluation, J Geol Soc India, 69, 29-38, (2007)
[18] Emery, X.; Lantuéjoul, C., TBSIM: a computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method, Comput Geosci, 32, 1615-1628, (2006)
[19] Emery, X.; Arroyo, D.; Porcu, E., An improved spectral turning-bands algorithm for simulating stationary vector Gaussian random fields, Stoch Environ Res Risk Assess, 30, 1863-1873, (2016)
[20] Korkmaz, S.; Goksuluk, D.; Zararsiz, G., MVN: an R package for assessing multivariate normality, R J, 6, 151-162, (2014)
[21] Maleki, M.; Emery, X.; Cáceres, A.; Ribeiro, D.; Cunha, E., Quantifying the uncertainty in the spatial layout of rock type domains in an iron ore deposit, Comput Geosci, 20, 1013-1028, (2016)
[22] Mardia, KV, Measures of multivariate skewness and kurtosis with applications, Biometrika, 57, 519-530, (1970) · Zbl 0214.46302
[23] Mariethoz G, Caers J (2014) Multiple-point geostatistics: stochastic modeling with training images. Wiley, New York, NY
[24] Markwell T (2001) Murrin Murrin Ni/Co resource estimation: MME resource modelling report. Anaconda Operations Pty Ltd, Melbourne, VIC
[25] McKinley, JM; Hron, K.; Grunsky, EC; Reimann, C.; Caritat, P.; Filzmoser, P.; Boogaart, KG; Tolosana-Delgado, R., The single component geochemical map: fact or fiction?, J Geochem Explor, 162, 16-28, (2016)
[26] Mery, N.; Emery, X.; Cáceres, A.; Ribeiro, D.; Cunha, E., Geostatistical modeling of the geological uncertainty in an iron ore deposit, Ore Geol Rev, 88, 336-351, (2017)
[27] Monti R, Fazakerley VW (1996) The Murrin Murrin nickel cobalt project. In: Grimsey EJ, Neuss I (eds) Proceedings of Nickel ’96: mineral to market, Kalgoorlie, WA, November 1996. AusIMM, Melbourne, VIC, pp 191-196
[28] Montoya, C.; Emery, X.; Rubio, E.; Wiertz, J., Multivariate resource modelling for assessing uncertainty in mine design and mine planning, J S Afr Inst Min Metall, 112, 353-363, (2012)
[29] Mueller U, Tolosana-Delgado R, van den Boogaart KG (2014) Approaches to the simulation of compositional data—a nickel-laterite comparative case study. In: Dimitrakopoulos R (ed) Proceedings of the orebody modelling and strategic mine planning symposium, Perth, WA, November 2014. AusIMM, Melbourne, VIC, pp 61-72
[30] Mueller, U.; Boogaart, KG; Tolosana-Delgado, R.; Gómez-Hernández, JJ (ed.); Rodrigo-Ilarri, J. (ed.); Rodrigo-Clavero, ME (ed.); Cassiraga, E. (ed.); Vargas-Guzmán, JA (ed.), A truly multivariate normal score transform based on lagrangian flow, 107-118, (2017), Cham
[31] Murphy M (2003) Geostatistical optimisation of sampling and estimation in a nickel laterite deposit. MSc thesis, Edith Cowan University (unpublished)
[32] Ortiz, JM; Emery, X., Geostatistical estimation of mineral resources with soft geological boundaries: a comparative study, J S Afr Inst Min Metall, 106, 577-584, (2006)
[33] Pawlowsky-Glahn, V.; Egozcue, JJ, Spatial analysis of compositional data: a historical review, J Geochem Explor, 164, 28-32, (2016)
[34] Pawlowsky-Glahn V, Olea RA (2004) Geostatistical analysis of compositional data. Oxford University Press, New York, NY · Zbl 1105.86004
[35] Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015) Modeling and analysis of compositional data. Statistics in practice. Wiley, Chichester
[36] Renard, D.; Beucher, H., 3D representations of a uranium roll-front deposit, Appl Earth Sci, 121, 84-88, (2012)
[37] Rondon, O., Teaching aid: minimum/maximum autocorrelation factors for joint simulation of attributes, Math Geosci, 44, 469-504, (2012) · Zbl 1321.86031
[38] Soares, A., Sequential indicator simulation with correction for local probabilities, Math Geol, 30, 761-765, (1998)
[39] Switzer P, Green A (1984) Min/max autocorrelation factors for multivariate spatial imagery. Technical report no. 6, Department of Statistics, Stanford University, Stanford, CA
[40] Székely, GJ; Rizzo, ML, A new test for multivariate normality, J Multivar Anal, 93, 58-80, (2005) · Zbl 1087.62070
[41] Székely, GJ; Rizzo, ML, Energy statistics: a class of statistics based on distances, J Stat Plan Inference, 143, 1249-1272, (2013) · Zbl 1278.62072
[42] Talebi, H.; Asghari, O.; Emery, X., Application of plurigaussian simulation to delineate the layout of alteration domains in Sungun copper deposit, Cent Eur J Geosci, 5, 514-522, (2013)
[43] Talebi, H.; Asghari, O.; Emery, X., Simulation of the lately injected dykes in an Iranian porphyry copper deposit using the plurigaussian model, Arab J Geosci, 7, 2771-2780, (2014)
[44] Talebi, H.; Asghari, O.; Emery, X., Stochastic rock type modeling in a porphyry copper deposit and its application to copper grade evaluation, J Geochem Explor, 157, 162-168, (2015)
[45] Talebi, H.; Sabeti, EH; Azadi, M.; Emery, X., Risk quantification with combined use of lithological and grade simulations: application to a porphyry copper deposit, Ore Geol Rev, 75, 42-51, (2016)
[46] Talebi, H.; Lo, J.; Mueller, U.; Gómez-Hernández, JJ (ed.); Rodrigo-Ilarri, J. (ed.); Rodrigo-Clavero, ME (ed.); Cassiraga, E. (ed.); Vargas-Guzmán, JA (ed.), A hybrid model for joint simulation of high-dimensional continuous and categorical variables, 415-430, (2017), Cham
[47] Tercan, AE, Importance of orthogonalization algorithm in modeling conditional distributions by orthogonal transformed indicator methods, Math Geol, 31, 155-173, (1999)
[48] Tolosana-Delgado R (2006) Geostatistics for constrained variables: positive data, compositions and probabilities—application to environmental hazard monitoring. Dissertation, Universitat de Girona, Girona
[49] Tolosana-Delgado, R.; Boogaart, KG, Joint consistent mapping of high-dimensional geochemical surveys, Math Geosci, 45, 983-1004, (2013) · Zbl 1321.86035
[50] Tolosana-Delgado R, Mueller U, van den Boogaart KG, Ward C (2014) Compositional block cokriging. In: Pardo-Igúzquiza E, Guardiola-Albert C, Heredia J, Moreno-Merino L, Durán JJ, Vargas-Guzmán JA (eds) Mathematics of planet Earth: proceedings of the 15th annual conference of the International Association for Mathematical Geosciences, Madrid, September 2013. Springer, Berlin, pp 713-716. https://doi.org/10.1007/978-3-642-32408-6_154
[51] Tolosana-Delgado, R.; Mueller, U.; Boogaart, KG; Ward, C.; Gutzmer, J., Improving processing by adaption to conditional geostatistical simulation of block compositions, J S Afr Inst Min Metall, 115, 13-26, (2015)
[52] Tolosana-Delgado, R.; Mueller, U.; Boogaart, KG; Raju, NJ (ed.), Compositionally compliant contact analysis, 11-14, (2016), Cham
[53] van den Boogaart KG, Tolosana-Delgado R (2013) Analyzing compositional data with R. Springer, Berlin · Zbl 1276.62011
[54] van den Boogaart KG, Tolosana-Delgado R, Lehmann M, Mueller U (2014) On the joint multipoint simulation of discrete and continuous geometallurgical parameters. In: Dimitrakopoulos R (ed) Proceedings of the orebody modelling and strategic mine planning symposium, Perth, WA, November 2014. AusIMM, Melbourne, VIC, pp 379-388
[55] Boogaart, KG; Mueller, U.; Tolosana-Delgado, R., An affine equivariant multivariate normal score transform for compositional data, Math Geosci, 49, 231-251, (2017) · Zbl 1365.86028
[56] Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, Berlin · Zbl 1015.62128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.