zbMATH — the first resource for mathematics

Improving CAS capabilities: new rules for computing improper integrals. (English) Zbl 1426.26003
Summary: Different Engineering applications require dealing with improper integral on unbounded domains (improper integrals of the first kind). The classical way for solving these integrals is by means of elementary Calculus (antiderivatives and limit computations) or using numerical approaches. In both situations different problems can arise. For example: the non-existence of antiderivative, the corresponding limit does not exist or integrals depending on parameters which complicate the use of numerical approaches. In order to solve this situation, Advanced Calculus techniques, such as Laplace or Fourier Transforms and the Residue Theorem can be applied. A brief review of the corresponding theoretical frame is included in this paper.
Computer Algebra Systems (Cas) are pieces of software that allow symbolic computations. Nowadays, there are many Cas in the market with an increasing level of sophistication which make them a very powerful tool in Engineering. In this paper, a brief review on the history of Cas evolution is introduced.
In this work, some Advanced Calculus techniques for computing improper integrals of the first kind which cannot be solved with standard procedures are described. These techniques could be easily integrated in almost every Cas. However, we have detected some lacks of these techniques in many widely used Cas.
In this paper, some tests involving improper integrals have been developed. These tests have been used to check the capabilities of some Cas and the results have provided a classification of the Cas with respect to this field.
One of the main contributions in this work is the generation of different rules to compute improper integrals of the first kind. The rules have been classified in specific rules (those coming from the tests) and general rules (those coming from theoretical frames and generalizations of the specific rules). These rules are easy to include in a Cas increasing the facilities of the Cas in the field of improper integral computation.

26-08 Computational methods for problems pertaining to real functions
26A42 Integrals of Riemann, Stieltjes and Lebesgue type
68W30 Symbolic computation and algebraic computation
Full Text: DOI
[1] Rich, A. D., A rule-based revolution. organizing mathematical knowledge as a rule-based decision tree, DERIVE Newsl., 100, 3-6, (2016)
[2] Hazewinkel, M., Encyclopedia of mathematics, (2001), Springer Dordrecht
[3] Jeffrey, A., Advanced engineering mathematics, (2002), Academic Press San Diego · Zbl 1057.00004
[4] Menabrea, L. F., Sketch of the analytical engine invented by charles babbage, Sci. Mem., 3, 666-731, (1843)
[5] Menabrea, L. F., Notations sur la machine analytique de charles babbage, Bibliothèque Universelle de Genève, 82, 352-376, (1842)
[6] \scWikipedia contributors, List of computer algebra systems, Wikipedia, the free encyclopedia, 2016. https://en.wikipedia.org/wiki/List_of_computer_algebra_systems (accessed December 9, 2016).
[7] Moses, J., Macsyma: a personal history, J. Symb. Comput., 47, 2, 123-130, (2012) · Zbl 1231.68291
[8] Slagle, J. R., A heuristic program that solves symbolic integration problems in freshman calculus: symbolic automatic integrator (SAINT), (1961), MIT Cambridge, MA, (Ph.D. dissertation)
[9] M.J.G. Veltman, D.N. Williams, 1993, Schoonship ’91, arXiv:hep-ph/9306228v2.
[10] Engelman, C., The legacy of \scmathlab 68, Proceedings of the Second ACM Symposium on Symbolic and Algebraic Manipulation (SYMSAC ’71), 29-41, (1971)
[11] Wikipedia Contributors, \scMATHLAB, Wikipedia, the free encyclopedia. 2016. https://en.wikipedia.org/wiki/MATHLAB (accessed August 29, 2016).
[12] A.C. Hearn, REDUCE: The First Forty Years, in: Proceedings of the A3L Conference in Honor of the 60th Birthday of Volker Weispfenning. 2005.
[13] \scReduce, 2016. http://reduce-algebra.sourceforge.net/ (accessed August 29, 2016).
[14] Bond, E., FORMAC - an experimental formula manipulation compiler, Proceedings of the 1964 19th ACM National Conference, 112.101-112.1019, (1964)
[15] Griesmer, J. H.; Jenks, R. D., SCRATCHPAD/1: an interactive facility for symbolic mathematics, Proceedings of the Second ACM Symposium on Symbolic and Algebraic Manipulation, 42-58, (1971)
[16] Brown, W. S., A language and system for symbolic algebra on a digital computer, Proceedings of the First ACM Symposium on Symbolic and Algebraic Manipulation, 501-540, (1966)
[17] Moses, J., Symbolic integration, (1967), MAC-TR-47, MIT Cambridge, MA.
[18] Jenks, R. D.; Sutor, R. S.; Watt, S. M., Scratchpad II: an abstract datatype system for mathematical computation, Lecture Notes in Computer Science, 296, 12-37, (1988), Springer Verlag · Zbl 0646.68043
[19] Rich, A. D., A brief history of the \scmumath/derive cass, DERIVE Newsl., 5, 40, (2000)
[20] Char, B. W., A tutorial introduction to Maple, J. Symb. Comput., 2, 2, 179-200, (1986)
[21] Kajler, N.; Soiffer, N., A survey of user interfaces for computer algebra systems, J. Symb. Comput., 25, 2, 127-159, (1998)
[22] \scThe GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.8.4. 2016, http://www.gap-system.org (accessed August 29, 2016).
[23] \scMathhandbook, 2016. http://mathhandbook.com/ (accessed August 29, 2016).
[24] Wolfram, S., Computer algebra: a 32-year update, Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ISSAC ’13, 7-8, (2013)
[25] \scForm, 2016http://www.nikhef.nl/ form/ (accessed August 29, 2016).
[26] Grabmeier, J.; Kaltofen, E.; Weispfenning, V., Computer algebra handbook, (2003), Springer
[27] \scPari/gp, 2016. http://pari.math.u-bordeaux.fr/ (accessed August 29, 2016).
[28] \scFermat, 2016http://home.bway.net/lewis/ (accessed August 29, 2016).
[29] \scMagma, 2016. http://magma.maths.usyd.edu.au/magma/ (accessed August 29, 2016).
[30] Daberkow, M., Kant v4, J. Symb. Comput., 24, 3-4, 267-283, (1997) · Zbl 0886.11070
[31] \scKant/Kash, 2016, http://page.math.tu-berlin.de/ kant/kash.html (accessed August 29, 2016).
[32] \scThe MathWorks Inc., Symbolic Math Toolbox User’s Guide 2.0, The MathWorks Inc., Natick, 1997.
[33] \scWikipedia contributors, MuPAD, Wikipedia, The Free Encyclopedia, 2016. https://en.wikipedia.org/wiki/MuPAD (accessed August 29, 2016).
[34] \scAxiom, 2016, http://www.axiom-developer.org/ (accessed August 29, 2016).
[35] \scFriCAS, 2016, http://fricas.sourceforge.net/ (accessed August 29, 2016).
[36] \scOpenAxiom, 2016, http://www.open-axiom.org/ (accessed August 29, 2016).
[37] Eisenbud, D., Computations in algebraic geometry with Macaulay 2, Algorithms and Computations in Mathematics, 8, (2001), Springer-Verlag
[38] \scMacaulay2, 2016, http://www.math.uiuc.edu/Macaulay2/ (accessed August 29, 2016).
[39] Abbott, J.; Bigatti, A.; Caboara, M.; Robbiano, L., Cocoa: computations in commutative algebra, ACM Commun. Comput. Algebra, 41, 3, 111-112, (2007)
[40] Roanes-Lozano, E.; Galán-García, J. L.; Aguilera-Venegas, G., A portable knowledge-based system for car breakdown evaluation, Appl. Math. Comput., 267, 758-770, (2015) · Zbl 1410.68352
[41] \scCoCoA, 2016, http://cocoa.dima.unige.it/ (accessed August 29, 2016).
[42] Baumslag, G.; Miller III, C. F., Experimenting and computing with infinite groups, DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, 28, 19-30, (1997), American Mathematical Society (AMS) · Zbl 0877.20025
[43] Greuel, G. M., Description of singular: a computer algebra system for singularity theory, Algebraic Geometry and Commutative Algebra(2), 161-172, (1996), Euromath Bulletin
[44] W. Decker, G.M. Greuel, G. Pfister, H. Schönemann, \scSingular 4-0-2 - A computer algebra system for polynomial computations, 2015, http://www.singular.uni-kl.de/index.php/how-to-cite-singular.html (accessed August 29, 2016).
[45] Hardy, Y.; Tan, K. S.; Steeb, W. H., Computer algebra with symbolic C++, (2008), World Scientific Singapore
[46] \scSymbolicC++, 2016, http://issc.uj.ac.za/symbolic/symbolic.html (accessed August 29, 2016).
[47] \scMaxima, 2016, http://maxima.sourceforge.net/ (accessed August 29, 2016).
[48] \scGiNaC, 2016, http://www.ginac.de/ (accessed August 29, 2016).
[49] Pinkus, A. Z.; Winitzki, S., \scyacas: a do-it-yourself symbolic algebra environment, artificial intelligence, automated reasoning, and symbolic computation, Lect. Notes Comput. Sci., 2385, 332-336, (2002) · Zbl 1072.68692
[50] \scYacas, 2016http://www.yacas.org/ (accessed August 29, 2016).
[51] B. Parisse, R. De Graeve, Giac/Xcas version 1.2.2, 2016. http://www-fourier.ujf-grenoble.fr/ parisse/giac.html (accessed August 29, 2016).
[52] Stein, W., Sage: creating a viable free open source alternative to magma, Maple, Mathematica, and MATLAB, Lond. Math. Soc. Lect. Note Ser., 403, 230-238, (2013) · Zbl 1316.65123
[53] \scSageMath, 2016, http://www.sagemath.org/ (accessed August 29, 2016).
[54] \scSMath Studio, 2016, http://en.smath.info/ (accessed August 29, 2016).
[55] \scRubi, 2016, http://www.apmaths.uwo.ca/ arich/index.html (accessed August 29, 2016).
[56] Brewin, L., A brief introduction to cadabra: a tool for tensor computations in general relativity, Comput. Phys. Commun., 181, 3, 489-498, (2010) · Zbl 1206.83007
[57] \scCadabra, 2016, http://cadabra.phi-sci.com/ (accessed August 29, 2016).
[58] Joyner, D.; Čertík, O.; Meurer, A.; Granger, B. E., Open source computer algebra systems: \scsympy, ACM Commun. Comput. Algebra, 45, 3/4, 225-234, (2012)
[59] \scSymPy, 2016, http://www.sympy.org/ (accessed August 29, 2016).
[60] \scWikipedia contributors, TI-Nspire series, Wikipedia, the free encyclopedia, TI-Nspire, 2016. https://en.wikipedia.org/wiki/TI-Nspire_series (accessed December 9, 2016).
[61] \scMathics, 2016, http://mathics.github.io/ (accessed August 29, 2016).
[62] \scSymja, 2016, https://bitbucket.org/axelclk/symja_android_library/ (accessed August 29, 2016).
[63] \scSymbolism, 2016, https://github.com/dharmatech/Symbolism (accessed August 29, 2016).
[64] \scDataMelt, 2016, http://jwork.org/dmelt/ (accessed August 29, 2016).
[65] \scSyMAT, 2016, http://symatapp.com/ (accessed August 29, 2016).
[66] \scCalcinator, 2016, http://calcinator.com/ (accessed August 29, 2016).
[67] Aguilera-Venegas, G.; Galán-García, J. L.; Galán-García, M. A.; Rodríguez-Cielos, P., Teaching semantic tableaux method for propositional classical logic with a CAS, Int. J. Technol. Math. Educ., 22, 2, 85-92, (2015)
[68] Aguilera, G.; Galán, J. L.; Madrid, R.; Martínez, A. M.; Padilla, Y.; Rodríguez, P., Automated generation of contrapuntal musical compositions using probabilistic logic in derive, J. Math. Comput. Simul., 80, 6, 1200-1211, (2010)
[69] Aguilera, G.; Galán, J. L.; García, J. M.; Mérida, E.; Rodríguez, P., An accelerated-time simulation of car traffic on a motorway using a CAS, J. Math. Comput. Simul., 104, 21-30, (2014)
[70] J.L. Galán, P. Rodríguez., M.A. Galán, Y. Padilla, E. Sánchez, J. Sánchez, Complex analysis.dfw: complex numbers and functions, User Contributed Math Packages of software \scDerive 6Texas Instruments, (2004).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.