×

zbMATH — the first resource for mathematics

A survey of adjustable robust optimization. (English) Zbl 1430.90537
Summary: Static robust optimization (RO) is a methodology to solve mathematical optimization problems with uncertain data. The objective of static RO is to find solutions that are immune to all perturbations of the data in a so-called uncertainty set. RO is popular because it is a computationally tractable methodology and has a wide range of applications in practice.
Adjustable robust optimization (ARO), on the other hand, is a branch of RO where some of the decision variables can be adjusted after some portion of the uncertain data reveals itself. ARO generally yields a better objective function value than that in static robust optimization because it gives rise to more flexible adjustable (or wait-and-see) decisions.
Additionally, ARO also has many real life applications and is a computationally tractable methodology for many parameterized adjustable decision variables and uncertainty sets. This paper surveys the state-of-the-art literature on applications and theoretical/methodological aspects of ARO. Moreover, it provides a tutorial and a road map to guide researchers and practitioners on how to apply ARO methods as well as the advantages and limitations of the associated methods.

MSC:
90C34 Semi-infinite programming
90C47 Minimax problems in mathematical programming
Software:
AIMMS; GitHub; JuMPeR; ROME
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmadi, A. A.; Majumdar, A., Some applications of polynomial optimization in operations research and real-time decision making, Optimization Letters, 10, 4, 1-21, (2015)
[2] Al-Khayyal, F. A.; Falk, J. E., Jointly constrained biconvex programming, Mathematics of Operations Research, 8, 2, 273-286, (1983) · Zbl 0521.90087
[3] An, Y.; Zeng, B.; Zhang, Y.; Zhao, L., Reliable p-median facility location problem: two-stage robust models and algorithms, Transportation Research Part B: Methodological, 64, 54-72, (2014)
[4] Ang, M.; Lim, Y. F.; Sim, M., Robust storage assignment in unit-load warehouses, Management Science, 58, 11, 2114-2130, (2012)
[5] Anstreicher, K. M.; Burer, S., Computable representations for convex hulls of low-dimensional quadratic forms, Mathematical Programming, 124, 1-2, 33-43, (2010) · Zbl 1198.90311
[6] Ardestani-Jaafari, A.; Delage, E., Affinely adjustable robust location transportation problem, Proceedings of the IIE Annual conference, 1504-1515, (2014)
[7] Awasthi, P.; Goyal, V.; Lu, B. Y., On the adaptivity gap in two-stage robust linear optimization under uncertain constraints, Optimization Online, (2015)
[8] Ayoub, J.; Poss, M., Decomposition for adjustable robust linear optimization subject to uncertainty polytope, Computational Management Science, 13, 2, 219-239, (2016) · Zbl 1397.90297
[9] Babonneau, F.; Vial, J.-Ph.; Apparigliato, R., Robust optimization for environmental and energy planning, Uncertainty and environmental decision making, 79-126, (2009)
[10] Beck, A.; Ben-Tal, A., Duality in robust optimization: primal worst equals dual best, Operations Research Letters, 37, 1, 1-6, (2009) · Zbl 1154.90614
[11] Belotti, P.; Miller, A. J.; Namazifar, M., Valid inequalities and convex hulls for multilinear functions, Electronic Notes in Discrete Mathematics, 36, 805-812, (2010) · Zbl 1274.90499
[12] Ben-Tal, A., den Hertog, D., & Laurent, M. (2011). Hidden Convexity in Partially Separable Optimization. Center Discussion Paper, 2011(070).
[13] Ben-Tal, A.; Do Chung, B.; Mandala, S. R.; Yao, T., Robust optimization for emergency logistics planning: Risk mitigation in humanitarian relief supply chains, Transportation Research Part B: Methodological, 45, 8, 1177-1189, (2011)
[14] Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A., Robust Optimization, Princeton Series in Applied Mathematics, (2009), Princeton University Press · Zbl 1221.90001
[15] Ben-Tal, A.; El Housni, O.; Goyal, V., A tractable approach for designing piecewise affine policies in dynamic robust optimization, Optimization Online, (2016)
[16] Ben-Tal, A.; Golany, B.; Nemirovski, A.; Vial, J.-Ph., Retailer-supplier flexible commitments contracts: A robust optimization approach, Manufacturing & Service Operations Management, 7, 3, 248-271, (2005)
[17] Ben-Tal, A.; Goryashko, A.; Guslitzer, E.; Nemirovski, A., Adjustable robust solutions of uncertain linear programs, Mathematical Programming, 99, 2, 351-376, (2004) · Zbl 1089.90037
[18] Ben-Tal, A.; Den Hertog, D., Hidden conic quadratic representation of some nonconvex quadratic optimization problems, Mathematical Programming, 143, 1-2, 1-29, (2014) · Zbl 1295.90036
[19] Ben-Tal, A.; Den Hertog, D.; Vial, J.-Ph., Deriving robust counterparts of nonlinear uncertain inequalities, Mathematical Programming, 149, 1-2, 265-299, (2015) · Zbl 1308.65089
[20] Ben-Tal, A.; Nemirovski, A., Robust optimization-methodology and applications, Mathematical Programming, 92, 3, 453-480, (2002) · Zbl 1007.90047
[21] Ben-Tal, A.; Nemirovski, A., Selected topics in robust convex optimization, Mathematical Programming, 112, 1, 125-158, (2008) · Zbl 1135.90046
[22] Bertsimas, D.; Bidkhori, H., On the performance of affine policies for two-stage adaptive optimization: a geometric perspective, Mathematical Programming, 153, 2, 577-594, (2015) · Zbl 1341.90094
[23] Bertsimas, D.; Brown, D. B.; Caramanis, C., Theory and applications of robust optimization, SIAM Review, 53, 3, 464-501, (2011) · Zbl 1233.90259
[24] Bertsimas, D.; Caramanis, C., Adaptability via sampling, Proceedings of the 46th IEEE conference on decision and control, 4717-4722, (2007)
[25] Bertsimas, D.; Caramanis, C., Finite adaptability in multistage linear optimization, IEEE Transactions on Automatic Control, 55, 12, 2751-2766, (2010) · Zbl 1368.90100
[26] Bertsimas, D.; Dunning, I., Multistage robust mixed-integer optimization with adaptive partitions, Operations Research, 64, 4, 980-998, (2016) · Zbl 1348.90624
[27] Bertsimas, D.; Dunning, I.; Lubin, M., Reformulation versus cutting-planes for robust optimization, Computational Management Science, 13, 2, 195-217, (2016)
[28] Bertsimas, D.; Georghiou, A., Design of near optimal decision rules in multistage adaptive mixed-integer optimization, Operations Research, 63(3), 610-627, (2015) · Zbl 1327.90126
[29] Bertsimas, D.; Georghiou, A., Binary decision rules for multistage adaptive mixed-integer optimization, Mathematical Programming, (2017)
[30] Bertsimas, D.; Goyal, V., On the power and limitations of affine policies in two-stage adaptive optimization, Mathematical Programming, 134, 2, 491-531, (2012) · Zbl 1267.90083
[31] Bertsimas, D.; Goyal, V., On the approximability of adjustable robust convex optimization under uncertainty, Mathematical Methods of Operations Research, 77, 3, 323-343, (2013) · Zbl 1285.90021
[32] Bertsimas, D.; Goyal, V.; Lu, B. Y., A tight characterization of the performance of static solutions in two-stage adjustable robust linear optimization, Mathematical Programming, 150, 2, 281-319, (2015) · Zbl 1309.90121
[33] Bertsimas, D., & Gupta, S. (2012). Multistage air traffic flow management under capacity uncertainty: a robust and adaptive optimization approach.
[34] Bertsimas, D.; Iancu, D. A.; Parrilo, P. A., Optimality of affine policies in multistage robust optimization, Mathematics of Operations Research, 35, 2, 363-394, (2010) · Zbl 1218.90216
[35] Bertsimas, D.; Iancu, D. A.; Parrilo, P. A., A hierarchy of near-optimal policies for multistage adaptive optimization, IEEE Transactions on Automatic Control, 56, 12, 2809-2824, (2011) · Zbl 1368.93336
[36] Bertsimas, D.; Litvinov, E.; Sun, X. A.; Zhao, J.; Zheng, T., Adaptive robust optimization for the security constrained unit commitment problem, IEEE Transactions on Power Systems, 28, 1, 52-63, (2013)
[37] Bertsimas, D.; De Ruiter, F. J.C. T., Duality in two-stage adaptive linear optimization: Faster computation and stronger bounds, INFORMS Journal on Computing, 28, 3, 500-511, (2016) · Zbl 1348.90625
[38] Bertsimas, D.; Vayanos, P., Data-driven learning in dynamic pricing using adaptive optimization, Optimization Online, (2014)
[39] Bienstock, D.; Özbay, N., Computing robust basestock levels, Discrete Optimization, 5, 2, 389-414, (2008) · Zbl 1151.90498
[40] Birge, J. R.; Louveaux, F. V., Introduction to stochastic programming, (2011), Springer · Zbl 1223.90001
[41] Birge, J. R.; Wets, J.-B., Designing approximation schemes for stochastic optimization problems, in particular, for stochastic programs with recourse, Mathematical Programming Study, 27, 54-102, (1986) · Zbl 0603.90104
[42] Bitlislioglu, A.; Gorecki, T. T.; Jones, C., Robust tracking commitment with application to demand response, Technical Report, (2015)
[43] Boni, O.; Ben-Tal, A., Adjustable robust counterpart of conic quadratic problems, Mathematical Methods of Operations Research, 68, 2, 211, (2008) · Zbl 1211.90153
[44] Bruni, M. E.; Pugliese, L. D.P., An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations, Omega, 71, 66-84, (2016)
[45] Calafiore, G.; Campi, M. C., Uncertain convex programs: randomized solutions and confidence levels, Mathematical Programming, 102, 1, 25-46, (2005) · Zbl 1177.90317
[46] Calafiore, G.; Nilim, A., Multi-stage resource allocation under uncertainty, Proceedings of the 43rd IEEE conference on decision and control, 1, 417-423, (2004)
[47] Calafiore, G. C., Multi-period portfolio optimization with linear control policies, Automatica, 44, 10, 2463-2473, (2008) · Zbl 1157.91354
[48] Campi, M. C., & Calafiore, G. (2004).Decision making in an uncertain environment: the scenario based optimization approach.In: Multiple Participant Decision Making (J. Andrysek, M. Karny and J. Kracik eds.). Advanced Knowledge International (pp. 99-111).
[49] Campi, M. C.; Garatti, S., The exact feasibility of randomized solutions of uncertain convex programs, SIAM Journal on Optimization, 19, 3, 1211-1230, (2008) · Zbl 1180.90235
[50] Chen, X.; Sim, M.; Sun, P.; Zhang, J., A linear decision-based approximation approach to stochastic programming, Operations Research, 56, 2, 344-357, (2008) · Zbl 1167.90609
[51] Chou, M.; Sim, M.; So, R., A robust optimization framework for analyzing distribution systems with transshipment, Technical Report, (2006)
[52] Cohen, I.; Golany, B.; Shtub, A., The stochastic time-cost tradeoff problem: A robust optimization approach, Networks, 49, 2, 175-188, (2007) · Zbl 1177.90285
[53] Dai, C.; Wu, L., A two-stage robust transmission expansion planning approach with multi-band uncertainty set, Power and energy society general meeting, 1-5, (2016)
[54] Danandeh, A.; Zhao, L.; Zeng, B., Job scheduling with uncertain local generation in smart buildings: Two-stage robust approach, IEEE Transactions on Smart Grid, 5, 5, 2273-2282, (2014)
[55] Dashti, H.; Conejo, A. J.; Jiang, R.; Wang, J., Weekly two-stage robust generation scheduling for hydrothermal power systems, IEEE Transactions on Power Systems, 31, 6, 4554-4564, (2016)
[56] Dehghan, S.; Amjady, N.; Kazemi, A., Two-stage robust generation expansion planning: a mixed integer linear programming model, IEEE Transactions on Power Systems, 29, 2, 584-597, (2014)
[57] Delage, E.; Iancu, D. A., Robust multistage decision making, The operations research revolution, 20-46, (2015), INFORMS
[58] Ding, T.; Bie, Z.; Bai, L.; Li, F., Adjustable robust optimal power flow with the price of robustness for large-scale power systems, IET Generation, Transmission & Distribution, 10, 1, 164-174, (2016)
[59] Ding, T.; Li, C.; Yang, Y.; Jiang, J.; Bie, Z.; Blaabjerg, F., A two-stage robust optimization for centralized-optimal dispatch of photovoltaic inverters in active distribution networks, IEEE Transactions on Sustainable Energy, (2016)
[60] Ding, T.; Liu, S.; Yuan, W.; Bie, Z.; Zeng, B., A two-stage robust reactive power optimization considering uncertain wind power integration in active distribution networks, IEEE Transactions on Sustainable Energy, 7, 1, 301-311, (2016)
[61] Dunning, I. (2017). JuMPeR-robust optimization with JuMP. Https://github.com/IainNZ/JuMPeR.jl, retrieved June.
[62] Dyer, M.; Stougie, L., Computational complexity of stochastic programming problems, Mathematical Programming, 106, 3, 423-432, (2006) · Zbl 1134.90027
[63] Fama, E. F.; French, K. R., Common risk factors in the returns on stocks and bonds, Journal of Financial Economics, 33, 1, 3-56, (1993) · Zbl 1131.91335
[64] Fliedner, T.; Liesiö, J., Adjustable robustness for multi-attribute project portfolio selection, European Journal of Operational Research, 252, 3, 931-946, (2016) · Zbl 1346.90423
[65] Fonseca, R.; Kuhn, D.; Rustem, B.; Simos, T. E.; Psihoyios, G.; Tsitouras, C., Linearly adjustable international portfolios, AIP conference proceedings, 1281, 338-341, (2010)
[66] Frauendorfer, K.; Kall, P., A solution method for SLP recourse problems with arbitrary multivariate distributions - the independent case, Problems in Control and Information Theory, 17, 177-205, (1988) · Zbl 0651.90054
[67] Fredriksson, A.; Forsgren, A.; Hårdemark, B., Minimax optimization for handling range and setup uncertainties in proton therapy, Medical Physics, 38, 3, 1672-1684, (2011)
[68] Fu, N.; Lau, H. C.; Varakantham, P., Robust execution strategies for project scheduling with unreliable resources and stochastic durations, Journal of Scheduling, 18, 6, 607-622, (2015) · Zbl 1333.90042
[69] Fu, N.; Varakantham, P.; Lau, H. C., Towards finding robust execution strategies for RCPSP/max with durational uncertainty, Proceedings of the international conference on automated planning and scheduling, 73-80, (2010)
[70] Gabrel, V.; Murat, C.; Remli, N.; Lacroix, M., A new bound for solving the recourse problem of the 2-stage robust location transportation problem, Technical Report, (2010) · Zbl 1237.90041
[71] Gabrel, V.; Murat, C.; Thiele, A., Recent advances in robust optimization: An overview, European Journal of Operational Research, 235, 3, 471-483, (2014) · Zbl 1305.90390
[72] Georghiou, A.; Wiesemann, W.; Kuhn, D., Generalized decision rule approximations for stochastic programming via liftings, Mathematical Programming, 152, 1-2, 301-338, (2015) · Zbl 1327.90152
[73] Goerigk, M.; Deghdak, K.; T’Kindt, V., A two-stage robustness approach to evacuation planning with buses, Transportation Research Part B: Methodological, 78, 66-82, (2015)
[74] Goh, J.; Hall, N. G., Total cost control in project management via satisficing, Management Science, 59, 6, 1354-1372, (2013)
[75] Goh, J.; Sim, M., Distributionally robust optimization and its tractable approximations, Operations Research, 58, 4-part-1, 902-917, (2010) · Zbl 1228.90067
[76] Goh, J.; Sim, M., Robust optimization made easy with ROME, Operations Research, 59, 4, 973-985, (2011) · Zbl 1235.90107
[77] Gong, J.; You, F., Optimal processing network design under uncertainty for producing fuels and value-added bioproducts from microalgae: Two-stage adaptive robust mixed integer fractional programming model and computationally efficient solution algorithm, AIChE Journal, 63, 2, 582-600, (2017)
[78] Gorissen, B. L.; Ben-Tal, A.; Blanc, J. P.C.; Den Hertog, D., Deriving robust and globalized robust solutions of uncertain linear programs with general convex uncertainty sets, Operations Research, 62, 3, 672-679, (2014) · Zbl 1302.90142
[79] Gorissen, B. L.; Den Hertog, D., Robust nonlinear optimization via the dual, Optimization Online, (2015)
[80] Gorissen, B. L.; Yanıkoğlu, İ.; Den Hertog, D., A practical guide to robust optimization, Omega, 53, 124-137, (2015)
[81] Goryashko, A.; Nemirovski, A., Robust energy cost optimization of water distribution system with uncertain demand, Automation and Remote Control, 75, 10, 1754-1769, (2014) · Zbl 1308.90006
[82] Hadjiyiannis, M. J.; Goulart, P. J.; Kuhn, D., An efficient method to estimate the suboptimality of affine controllers, IEEE Transactions on Automatic Control, 56, 12, 2841-2853, (2011) · Zbl 1368.93787
[83] Hadjiyiannis, M. J.; Goulart, P. J.; Kuhn, D., A scenario approach for estimating the suboptimality of linear decision rules in two-stage robust optimization, Proceedings of the 50th IEEE conference on decision and control and european control conference, 7386-7391, (2011)
[84] Hanasusanto, G. A.; Kuhn, D.; Wiesemann, W., K-adaptability in two-stage robust binary programming, Operations Research, 63(4), 877-891, (2015) · Zbl 1329.90164
[85] Holt, C. C.; Modigliani, F.; Simon, H. A., A linear decision rule for production and employment scheduling, Management Science, 2, 1, 1-30, (1955)
[86] Housh, M.; Ostfeld, A.; Shamir, U., Optimal multi-year management of a regional water supply system under uncertainty: the affine adjustable robust counterpart (AARC) approach, World environmental and water resources congress 2012: Crossing boundaries, 793-807, (2012)
[87] El Housni, O., & Goyal, V. (2017). Beyond worst-case: A probabilistic analysis of affine policies in dynamic optimization. In Advances in Neural Information Processing Systems (pp. 4756-4764).
[88] Hu, B.; Wu, L., Robust SCUC considering continuous/discrete uncertainties and quick-start units: A two-stage robust optimization with mixed-integer recourse, IEEE Transactions on Power Systems, 31, 2, 1407-1419, (2016)
[89] Iancu, D. A.; Sharma, M.; Sviridenko, M., Supermodularity and affine policies in dynamic robust optimization, Operations Research, 61, 4, 941-956, (2013) · Zbl 1291.90303
[90] Iancu, D. A.; Trichakis, N., Pareto efficiency in robust optimization, Management Science, 60, 1, 130-147, (2014)
[91] Jabr, R. A., Adjustable robust OPF with renewable energy sources, IEEE Transactions on Power Systems, 28, 4, 4742-4751, (2013)
[92] Jaillet, P.; Qi, J.; Sim, M., Routing optimization under uncertainty, Operations Research, 64, 1, 186-200, (2016) · Zbl 1338.90107
[93] Jiang, R.; Zhang, M.; Li, G.; Guan, Y., Benders’ decomposition for the two-stage security constrained robust unit commitment problem, Proceedings of the IIE annual conference, 1, (2012)
[94] Jiang, R.; Zhang, M.; Li, G.; Guan, Y., Two-stage network constrained robust unit commitment problem, European Journal of Operational Research, 234, 3, 751-762, (2014) · Zbl 1304.90056
[95] Kuhn, D.; Wiesemann, W.; Georghiou, A., Primal and dual linear decision rules in stochastic and robust optimization, Mathematical Programming, 130, 1, 177-209, (2011) · Zbl 1236.90087
[96] Lappas, N. H.; Gounaris, C. E., Multi-stage adjustable robust optimization for process scheduling under uncertainty, AIChE Journal, 62, 5, 1646-1667, (2016)
[97] Lee, C.; Liu, C.; Mehrotra, S.; Shahidehpour, M., Modeling transmission line constraints in two-stage robust unit commitment problem, IEEE Transactions on Power Systems, 29, 3, 1221-1231, (2014)
[98] Lei, C.; Lin, W.-H.; Miao, L., A two-stage robust optimization approach for the mobile facility fleet sizing and routing problem under uncertainty, Computers & Operations Research, 67, 75-89, (2016) · Zbl 1349.90097
[99] Li, B.; Wang, H.; Yang, J.; Guo, M.; Qi, C., A belief-rule-based inference method for aggregate production planning under uncertainty, International Journal of Production Research, 51, 1, 83-105, (2013)
[100] Li, Z.; Wu, W.; Zhang, B.; Wang, B., Adjustable robust real-time power dispatch with large-scale wind power integration, IEEE Transactions on Sustainable Energy, 6, 2, 357-368, (2015)
[101] Lim, S., A joint optimal pricing and order quantity model under parameter uncertainty and its practical implementation, Omega, 41, 6, 998-1007, (2013)
[102] Liu, H.; Han, K.; Gayah, V.; Friesz, T.; Yao, T., Data-driven linear decision rule approach for distributionally robust optimization of on-line signal control, Transportation Research Procedia, 7, 536-555, (2015)
[103] Liu, J.; Hu, M.; Dou, X.; Xu, W.; Yang, J.; Qiu, X., Micro grid energy management based on two-stage robust optimization, 19th international conference on electrical machines and systems, 1-5, (2016)
[104] Lobo, M. S., Robust and convex optimization with applications in finance, (2000), Stanford University, Ph.D. thesis.
[105] Löfberg, J., Automatic robust convex programming, Optimization Methods and Software, 27, 1, 115-129, (2012) · Zbl 1242.90289
[106] Lorenzen, M.; Bürger, M.; Notarstefano, G.; Allgöwer, F., A distributed solution to the adjustable robust economic dispatch problem, IFAC Proceedings Volumes, 46, 27, 75-80, (2013)
[107] Mani, M.; Sing, A. K.; Orshansky, M., Joint design-time and post-silicon minimization of parametric yield loss using adjustable robust optimization, Proceedings of the 2006 IEEE/ACM international conference on computer-aided design, 19-26, (2006)
[108] Marandi, A.; Den Hertog, D., When are static and adjustable robust optimization with constraint-wise uncertainty equivalent?, Math. Prog., 170, 2, 555-568, (2017) · Zbl 1401.90224
[109] Mattia, S.; Rossi, F.; Servilio, M.; Smriglio, S., Staffing and scheduling flexible call centers by two-stage robust optimization, Omega, 72, 25-37, (2017)
[110] McCormick, G. P., Computability of global solutions to factorable nonconvex programs: Part I-convex underestimating problems, Mathematical Programming, 10, 1, 147-175, (1976) · Zbl 0349.90100
[111] Mejia-Giraldo, D.; McCalley, J., Adjustable decisions for reducing the price of robustness of capacity expansion planning, IEEE Transactions on Power Systems, 29, 4, 1573-1582, (2014)
[112] Mejía-Giraldo, D.; Villarreal-Marimon, J.; Lopez-Mejía, H., Adjustable robust long-term energy planning under hydrological uncertainty, Proceedings of the 2014 IEEE pes general meeting, 1-5, (2014)
[113] Melamed, M.; Ben-Tal, A.; Golany, B., A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source, Renewable Energy, 118, 909-917, (2016)
[114] Melamed, M.; Ben-Tal, A.; Golany, B., On the average performance of the adjustable ro and its use as an offline tool for multi-period production planning under uncertainty, Computational Management Science, 13, 2, 293-315, (2016) · Zbl 1397.90314
[115] Meng, Q.-c.; Wan, X.-l.; Rong, X.-x., A robust ordering strategy for retailers facing a free shipping option, PloS one, 10, 5, e0125939, (2015)
[116] Moallemi, C. C., & Sağlam, M. (2015). Dynamic portfolio choice with linear rebalancing rules,.
[117] Morales-España, G.; Michael, D.; Ramírez-Elizondo, L.; de Weerdt, M. M., Robust unit commitment with dispatchable wind: An LP reformulation of the second-stage, Technical Report, (2015)
[118] Moreira, A.; Street, A.; Arroyo, J. M., An adjustable robust optimization approach for contingency-constrained transmission expansion planning, IEEE Transactions on Power Systems, 30, 4, 2013-2022, (2015)
[119] Moreira, A.; Street, A.; Arroyo, J. M., Energy and reserve scheduling under correlated nodal demand uncertainty: An adjustable robust optimization approach, International Journal of Electrical Power & Energy Systems, 72, 91-98, (2015)
[120] Nace, D., Poss, M., & Santos, M. (2017). A perfect information lower bound for robust lot-sizing problems,. · Zbl 1411.90020
[121] Nagy, Z. K.; Braatz, R. D., Robust nonlinear model predictive control of batch processes, AIChE Journal, 49, 7, 1776-1786, (2003)
[122] Nesterov, Y., Squared functional systems and optimization problems, High performance optimization, 405-440, (2000) · Zbl 0958.90090
[123] Ng, T. S.; Sy, C., An affine adjustable robust model for generation and transmission network planning, International Journal of Electrical Power & Energy Systems, 60, 141-152, (2014)
[124] Ouorou, A., Tractable approximations to a robust capacity assignment model in telecommunications under demand uncertainty, Computers & Operations Research, 40, 1, 318-327, (2013) · Zbl 1349.90187
[125] Pan, L.; Housh, M.; Liu, P.; Cai, X.; Chen, X., Robust stochastic optimization for reservoir operation, Water Resources Research, 51, 1, 409-429, (2015)
[126] Papadelis, S.; Flamos, A.; Psarras, J., A framework to address uncertainties in energy policy formulation, Energy Sources, Part B: Economics, Planning, and Policy, 8, 3, 270-278, (2013)
[127] Peng, C.; Xie, P.; Chen, C., Adjustable robust optimal dispatch of power system with large-scale photovoltaic power stations, Proceedings of the CSEE, 34, 4325-4332, (2014)
[128] Pınar, M.Ç.; Tütüncü, R. H., Robust profit opportunities in risky financial portfolios, Operations Research Letters, 33, 4, 331-340, (2005) · Zbl 1122.91043
[129] Piri, S.; Liu, T., Adjustable robust optimization for pricing and ordering with dynamic programming, Proceedings of the IIE annual conference, 1555, (2014)
[130] Pólik, I.; Terlaky, T., A survey of the S-lemma, SIAM Review, 49, 3, 371-418, (2007) · Zbl 1128.90046
[131] Postek, K.; Den Hertog, D., Multistage adjustable robust mixed-integer optimization via iterative splitting of the uncertainty set, INFORMS Journal on Computing, 28, 3, 553-574, (2016) · Zbl 1348.90507
[132] Postek, K.; Den Hertog, D.; Kind, J.; Pustjens, C., Adjustable robust strategies for flood protection, CentER Discussion Paper, 2016, 038, (2016)
[133] Prékopa, A., Stochastic programming, (1995), Kluwer Academic Publishers · Zbl 0863.90116
[134] Rockafellar, R. T., Convex Analysis, (1997), Princeton University Press · Zbl 0932.90001
[135] Roelofs, M., & Bisschop, J. (2015). AIMMS 4.3: The Language Reference, Paragon Decision Technology BV.
[136] Rozenblit, M. (2010). Robust optimization of a multi-period production planning problem under uncertainty. Master’s thesis. Technion- Israel Institute of Technology.
[137] De Ruiter, F. J.C. T.; Ben-Tal, A.; Brekelmans, R. C.M.; Den Hertog, D., Robust optimization of uncertain multistage inventory systems with inexact data in decision rules, Computational Management Science, 14, 1, 45-66, (2017) · Zbl 1397.90047
[138] De Ruiter, F. J.C. T.; Brekelmans, R. C.M.; Den Hertog, D., The impact of the existence of multiple adjustable robust solutions, Mathematical Programming, 160, 1-2, 531-545, (2016) · Zbl 1356.90100
[139] Ruszczyński, A. P.; Shapiro, A., Stochastic Programming (handbooks in operations research and management science), (2003), Elsevier
[140] See, C.-T.; Sim, M., Robust approximation to multiperiod inventory management, Operations Research, 58, 3, 583-594, (2010) · Zbl 1231.90059
[141] Shi, H.; You, F., A computational framework and solution algorithms for two-stage adaptive robust scheduling of batch manufacturing processes under uncertainty, AIChE Journal, 62, 3, 687-703, (2016)
[142] Shu, J.; Song, M., Dynamic container deployment: two-stage robust model, complexity, and computational results, INFORMS Journal on Computing, 26, 1, 135-149, (2013) · Zbl 1356.90026
[143] Soyster, A. L., Convex programming with set-inclusive constraints and applications to inexact linear programming, Operations Research, 21, 5, 1154-1157, (1973) · Zbl 0266.90046
[144] Sözüer, S.; Thiele, A. C., The state of robust optimization, Robustness analysis in decision aiding, optimization, and analytics, 89-112, (2016)
[145] Street, A.; Moreira, A.; Arroyo, J. M., Energy and reserve scheduling under a joint generation and transmission security criterion: An adjustable robust optimization approach, IEEE transactions on Power Systems, 29, 1, 3-14, (2014)
[146] Sun, H.; Gao, Z.; Zhao, F., Dynamic network design problem under demand uncertainty: an adjustable robust optimization approach, Discrete Dynamics in Nature and Society, (2014)
[147] Takeda, A.; Taguchi, S.; Tütüncü, R. H., Adjustable robust optimization models for a nonlinear two-period system, Journal of Optimization Theory and Applications, 136, 2, 275-295, (2008) · Zbl 1146.90075
[148] Tang, F.; Zhang, L.; Huang, J.; Yang, W., An affinely adjustable robust optimization approach to emergency logistics distribution under uncertain demands, IEEE international conference on industrial engineering and engineering management, 1738-1742, (2009)
[149] Tang, J.; Wang, Y., An adjustable robust optimisation method for elective and emergency surgery capacity allocation with demand uncertainty, International Journal of Production Research, 53, 24, 7317-7328, (2015)
[150] Van Den Akker, J.; Bouman, P. C.; Hoogeveen, J.; Tönissen, D. D., Decomposition approaches for recoverable robust optimization problems, European Journal of Operational Research, 251, 3, 739-750, (2016) · Zbl 1346.90726
[151] Vayanos, P.; Kuhn, D.; Rustem, B., Decision rules for information discovery in multi-stage stochastic programming, Proceedings of the 50th IEEE conference on decision and control and European control conference, 7368-7373, (2011)
[152] Wang, C.; Liu, F.; Wang, J.; Qiu, F.; Wei, W.; Mei, S.; Lei, S., Robust risk-constrained unit commitment with large-scale wind generation: An adjustable uncertainty set approach, IEEE Transactions on Power Systems, 32, 1, 723-733, (2017)
[153] Wang, F.; Zong, Q.; Zhang, J.-L.; Li, J.-F., Adjustable robust optimization scheduling for group elevator system, Control Theory & Applications, 29, 1, 27-33, (2012)
[154] Wang, Q.; Wang, X.; Cheung, K.; Guan, Y.; Bresler, F. S.S., A two-stage robust optimization for PJM look-ahead unit commitment, Proceedings of the IEEE grenoble powertech, 1-6, (2013)
[155] Wang, Q.; Watson, J.-P.; Guan, Y., Two-stage robust optimization for Nk contingency-constrained unit commitment, IEEE Transactions on Power Systems, 28, 3, 2366-2375, (2013)
[156] Wang, X.; Nieuwesteeg, P.; Listes, O.; Bresler, S.; Ogburn, R., A robust look-ahead unit commitment, 2012 ieee power and energy society general meeting, 1-4, (2012)
[157] Warrington, J.; Goulart, P.; Mariéthoz, S.; Morari, M., Policy-based reserves for power systems, IEEE Transactions on Power Systems, 28, 4, 4427-4437, (2013)
[158] Warrington, J.; Goulart, P. J.; Mariéthoz, S.; Morari, M., Robust reserve operation in power systems using affine policies, Proceedings of the IEEE 51st annual conference on decision and control, 1111-1117, (2012)
[159] Warrington, J.; Hohl, C.; Goulart, P. J.; Morari, M., Rolling unit commitment and dispatch with multi-stage recourse policies for heterogeneous devices, IEEE Transactions on Power Systems, 31, 1, 187-197, (2016)
[160] Wright, S. E., Primal-dual aggregation and disaggregation for stochastic linear programs, Mathematics of Operations Research, 19, 4, 893-908, (1994) · Zbl 0821.90086
[161] Xiong, P. (2016). XProg 1.0 users’ guide,. Http://xprog.weebly.com.
[162] Xiong, P.; Jirutitijaroen, P., An adjustable robust optimization approach for unit commitment under outage contingencies, Proceedings of the 2012 IEEE power and energy society general meeting, 1-8, (2012)
[163] Xiong, P.; Jirutitijaroen, P., A linear decision rule approach for robust unit commitment considering wind power generation, Proceedings of the power systems computation conference, 1-7, (2014)
[164] Xiong, P.; Jirutitijaroen, P.; Singh, C., A distributionally robust optimization model for unit commitment considering uncertain wind power generation, IEEE Transactions on Power Systems, 32, 1, 39-49, (2017)
[165] Xu, Y.; Huang, G.; Qin, X., Inexact two-stage stochastic robust optimization model for water resources management under uncertainty, Environmental Engineering Science, 26, 12, 1765-1776, (2009)
[166] Yan, S.; Tang, C.-H., Inter-city bus scheduling under variable market share and uncertain market demands, Omega, 37, 1, 178-192, (2009)
[167] Yanıkoğlu, I. (2017). A tutorial on deriving adjustable robust counterparts. Working paper,.
[168] Yanıkoğlu, I.; Kuhn, D., Decision rule bounds for stochastic bilevel programs, Optimization Online, (2016)
[169] Zhang, B.; Yao, T.; Friesz, T. L.; Sun, Y., A tractable two-stage robust winner determination model for truckload service procurement via combinatorial auctions, Transportation Research Part B: Methodological, 78, 16-31, (2015)
[170] Zhang, C.; Xu, Y.; Dong, Z. Y.; Ma, J., Robust operation of microgrids via two-stage coordinated energy storage and direct load control, IEEE Transactions on Power Systems, (2016)
[171] Zhang, J.; Zong, Q.; Wang, F.; Li, J., Elevator group scheduling for peak flows based on adjustable robust optimization model, Proceedings of the 2011 30th chinese control and decision conference, 1593-1598, (2011)
[172] Zhang, Q.; Morari, M. F.; Grossmann, I. E.; Sundaramoorthy, A.; Pinto, J. M., An adjustable robust optimization approach to scheduling of continuous industrial processes providing interruptible load, Computers & Chemical Engineering, 86, 106-119, (2016)
[173] Zhao, C.; Wang, J.; Watson, J.-P.; Guan, Y., Multi-stage robust unit commitment considering wind and demand response uncertainties, IEEE Transactions on Power Systems, 28, 3, 2708-2717, (2013)
[174] Zhen, J.; Den Hertog, D.; Sim, M., Adjustable robust optimization via Fourier-Motzkin elimination, Optimization Online, (2016)
[175] Zugno, M.; Morales, J. M.; Madsen, H., Commitment and dispatch of heat and power units via affinely adjustable robust optimization, Computers & Operations Research, 75, 191-201, (2016) · Zbl 1349.90900
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.