×

zbMATH — the first resource for mathematics

Quenched central limit theorem rates of convergence for one-dimensional random walks in random environments. (English) Zbl 1459.60211
Summary: Unlike classical simple random walks, one-dimensional random walks in random environments (RWRE) are known to have a wide array of potential limiting distributions. Under certain assumptions, however, it is known that CLT-like limiting distributions hold for the walk under both the quenched and averaged measures. We give upper bounds on the rates of convergence for the quenched central limit theorems for both the hitting time and position of the RWRE with polynomial rates of convergence that depend on the distribution on environments.
Reviewer: Reviewer (Berlin)

MSC:
60K37 Processes in random environments
60F05 Central limit and other weak theorems
60G50 Sums of independent random variables; random walks
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Ahn, S.W. and Peterson, J. (2016). Oscillations of quenched slowdown asymptotics for ballistic one-dimensional random walk in a random environment. Electron. J. Probab.21 Paper No. 16, 27. · Zbl 1336.60197
[2] Alili, S. (1999). Asymptotic behaviour for random walks in random environments. J. Appl. Probab.36 334–349. · Zbl 0946.60046
[3] Armstrong, S.N. and Smart, C.K. (2014). Quantitative stochastic homogenization of elliptic equations in nondivergence form. Arch. Ration. Mech. Anal.214 867–911. · Zbl 1304.35714
[4] Berry, A.C. (1941). The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Amer. Math. Soc.49 122–136. · Zbl 0025.34603
[5] Caffarelli, L.A. and Souganidis, P.E. (2010). Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media. Invent. Math.180 301–360. · Zbl 1192.35048
[6] Dembo, A., Peres, Y. and Zeitouni, O. (1996). Tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys.181 667–683. · Zbl 0868.60058
[7] Dolgopyat, D. and Goldsheid, I. (2012). Quenched limit theorems for nearest neighbour random walks in 1D random environment. Comm. Math. Phys.315 241–277. · Zbl 1260.60187
[8] Enriquez, N., Sabot, C., Tournier, L. and Zindy, O. (2013). Quenched limits for the fluctuations of transient random walks in random environment on \(\Bbb{Z}^{1}\). Ann. Appl. Probab.23 1148–1187. · Zbl 1279.60126
[9] Esseen, C.-G. (1942). On the Liapounoff limit of error in the theory of probability. Ark. Mat. Astron. Fys.28A 19. · JFM 68.0277.02
[10] Gantert, N. and Peterson, J. (2011). Maximal displacement for bridges of random walks in a random environment. Ann. Inst. Henri Poincaré Probab. Stat.47 663–678. · Zbl 1262.60096
[11] Gantert, N. and Shi, Z. (2002). Many visits to a single site by a transient random walk in random environment. Stochastic Process. Appl.99 159–176. · Zbl 1059.60100
[12] Gantert, N. and Zeitouni, O. (1998). Quenched sub-exponential tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys.194 177–190. · Zbl 0982.60037
[13] Gloria, A., Neukamm, S. and Otto, F. (2015). Quantification of ergodicity in stochastic homogenization: Optimal bounds via spectral gap on Glauber dynamics. Invent. Math.199 455–515. · Zbl 1314.39020
[14] Gloria, A. and Otto, F. (2011). An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab.39 779–856. · Zbl 1215.35025
[15] Goldsheid, I.Ya. (2007). Simple transient random walks in one-dimensional random environment: The central limit theorem. Probab. Theory Related Fields139 41–64. · Zbl 1134.60065
[16] Katz, M.L. (1963). Note on the Berry-Esseen theorem. Ann. Math. Stat.34 1107–1108. · Zbl 0122.36704
[17] Kesten, H., Kozlov, M.V. and Spitzer, F. (1975). A limit law for random walk in a random environment. Compos. Math.30 145–168. · Zbl 0388.60069
[18] Mayer-Wolf, E., Roitershtein, A. and Zeitouni, O. (2004). Limit theorems for one-dimensional transient random walks in Markov environments. Ann. Inst. Henri Poincaré Probab. Stat.40 635–659. · Zbl 1070.60024
[19] Mourrat, J.-C. (2012). A quantitative central limit theorem for the random walk among random conductances. Electron. J. Probab.17 no. 97, 17. · Zbl 1286.60102
[20] Papanicolaou, G.C. and Varadhan, S.R.S. (1982). Diffusions with random coefficients. In Statistics and Probability: Essays in Honor of C.R. Rao 547–552. Amsterdam: North-Holland. · Zbl 0486.60076
[21] Peterson, J. (2009). Quenched limits for transient, ballistic, sub-Gaussian one-dimensional random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat.45 685–709. · Zbl 1178.60071
[22] Peterson, J. and Samorodnitsky, G. (2012). Weak weak quenched limits for the path-valued processes of hitting times and positions of a transient, one-dimensional random walk in a random environment. ALEA Lat. Am. J. Probab. Math. Stat.9 531–569. · Zbl 1277.60189
[23] Peterson, J. and Samorodnitsky, G. (2013). Weak quenched limiting distributions for transient one-dimensional random walk in a random environment. Ann. Inst. Henri Poincaré Probab. Stat.49 722–752. · Zbl 1277.60188
[24] Peterson, J. and Zeitouni, O. (2009). Quenched limits for transient, zero speed one-dimensional random walk in random environment. Ann. Probab.37 143–188. · Zbl 1179.60070
[25] Peterson, J. (2008). Limiting distributions and large deviations for random walks in random environments. PhD thesis, University of Minnesota. Available at http://arxiv.org/abs/0810.0257.
[26] Petrov, V.V. (1975). Sums of Independent Random Variables. New York–Heidelberg: Springer. Translated from the Russian by A.A. Brown, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. · Zbl 0322.60042
[27] Sinaĭ, Ya.G. (1983). The limit behavior of a one-dimensional random walk in a random environment. Theory Probab. Appl.27 256–268.
[28] Solomon, F. (1975). Random walks in a random environment. Ann. Probab.3 1–31. · Zbl 0305.60029
[29] Yurinskiĭ, V.V. (1982). Averaging of second-order nondivergent equations with random coefficients. Sibirsk. Mat. Zh.23 176–188, 217.
[30] Yurinskiĭ, V.V. (1988). On the error of averaging of multidimensional diffusions. Teor. Veroyatn. Primen.33 14–24.
[31] Zeitouni, O. (2004). Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math.1837 189–312. · Zbl 1060.60103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.