zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Rings in which derivations satisfy certain algebraic conditions. (English) Zbl 0705.16021
The purpose of this paper is to investigate some commutator conditions for rings. Rings in which all inner derivations are potent are called PD- rings. Following are some of the results proved: (1) Let R be a semiprime ring. If d is a derivation of R which is either an endomorphism or an anti-endomorphism, then $d=0$. (2) Let R be a prime ring and U a nonzero right ideal of R. If d is a derivation of R which acts as a homomorphism or an anti-homomorphism on U, then $d=0$ on R. (3) Every PD-ring is commutative.
Reviewer: S.K.Jain

16U70Center, normalizer (invariant elements) for associative rings
16N60Prime and semiprime associative rings
16W25Derivations, actions of Lie algebras (associative rings and algebras)
Full Text: DOI
[1] H. E. Bell, Some commutativity results for periodic rings,Acta Math. Acad. Sci. Hungar.,28 (1976), 279--283. · Zbl 0335.16035 · doi:10.1007/BF01896791
[2] H. E. Bell, On commutativity of periodic rings and near-rings,Acta Math. Acad. Sci. Hungar.,36 (1980), 293--302. · Zbl 0464.16026 · doi:10.1007/BF01898145
[3] A. Giambruno and I. N. Herstein, Derivations with nilpotent values,Rend. Circ. Mat. Palermo, (2)30 (1981), 199--206. · Zbl 0482.16030 · doi:10.1007/BF02844306
[4] N. D. Gupta, Some group laws equivalent to the commutative law,Arch. Math.,17 (1966), 97--102. · Zbl 0135.04302 · doi:10.1007/BF01899854
[5] I. N. Herstein, A theorem on rings,Canad. J. Math.,5 (1953), 238--241. · Zbl 0051.02502 · doi:10.4153/CJM-1953-025-6
[6] I. N. Herstein,Topics in ring theory, Univ. of Chicago Math. Lecture Notes, 1965. · Zbl 0138.26802
[7] A. Kurosh,Theory of groups, v. I, Chelsea Publishing, 1960. · Zbl 0094.24501
[8] F. W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions,J. Indian Math. Soc.,6 (1942), 87--97. · Zbl 0061.02606
[9] F. W. Levi, Notes on group theory I, II,J. Indian Math. Soc.,8 (1944), 1--9. · Zbl 0061.02608
[10] I. D. Macdonald, Some group elements defined by commutators,Math. Scientist,4 (1979), 129--131. · Zbl 0414.20031
[11] W. Streb, Über einen Satz von Herstein und Nakayama,Rend. Sem. Mat. Univ. Padova,64 (1981), 159--171. · Zbl 0474.16024