×

Maslov indices on the metaplectic group \(Mp(n)\). (English) Zbl 0705.22013

We use the properties of \(Mp(n)\) to construct functions \(\mu_{\ell}: Mp(n)\to {\mathbb{Z}}_ 8\) associated with the elements \(\ell\) of the lagrangian grassmannian \(\Lambda(n)\) which generalize the Maslov index on Mp(n) defined by J. Leray in his “Lagrangian Analysis” (1981; Zbl 0483.35002). We deduce from these constructions the identity between Mp(n) and a subset of \(Sp(n)\times {\mathbb{Z}}_ 8\), equipped with appropriate algebraic and topological structures.
Reviewer: M.de Gosson

MSC:

22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53D50 Geometric quantization

Citations:

Zbl 0483.35002
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] M. de GOSSON, La définition de l’indice de Maslov sans hypothèse de transversalité, C.R. Acad. Sci. Paris, t. 310, Série I (1990), 279-282. · Zbl 0705.22012
[2] M. de GOSSON, La relation entre sp∞, revêtement universel du groupe symplectique Sp et Sp × ℤ, C.R. Acad. Sci. Paris, t. 310, Série I (1990), 245-248. · Zbl 0732.22001
[3] M. de GOSSON, The structure of q-symplectic geometry, to appear in : Journal des Mathématiques Pures et Appliquées, Paris, 1990. · Zbl 0829.58015
[4] V. GUILLEMIN, S. STERNBERG, Geometric asymptotics, Math. Surveys 14, A.M.S., Providence, R.I., 1977. · Zbl 0364.53011
[5] J. LERAY, Lagrangian analysis and quantum mechanics, The M.I.T. Press, Cambridge, London, 1981, (Analyse Lagrangienne, R.C.P. 25, Strasbourb, 1978 ; Collège de France 1976-1977).
[6] G. LION, M. VERGNE, The Weil representation, Maslov index and Theta series, Birkhäuser (Progress in Mathematics), Boston, Basel, Bruxelles, 1980. · Zbl 0444.22005
[7] A. WEIL, Sur certains groupes d’opérateurs unitaires, Acta Math., 111, 1964. · Zbl 0203.03305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.