On an inequality of Lieb and Thirring. (English) Zbl 0705.47020

Let a and b be positive selfadjoint operators on a Hilbert space. Then under appropriate assumptions there holds \[ Trace((b^{1/2}ab^{1/2})^{qk})\leq Trace((b^{q/2}a^ qb^{q/2})^ k). \]
Reviewer: A.Pietsch


47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
Full Text: DOI


[1] GoldenS.,Phys. Rev. 137, B1127-B1128 (1965).
[2] ThompsonC. J.,J. Math. Phys. 6, 1812-1813 (1965).
[3] Lieb, E. and Thirring, W., in E. Lieb, B. Simon and A. S. Wightman (eds),Studies in Mathematical Physics, Princeton Press, 1976, pp. 301-302.
[4] WeylH.,Proc. Natl. Acad. Sci. U.S. 35, 408-411 (1949). · Zbl 0032.38701
[5] PolyaG.,Proc. Natl. Acad. Sci. U.S. 36, 49-51 (1950). · Zbl 0041.15402
[6] HeinzE.,Math. Ann. 123, 415-538 (1951). · Zbl 0043.32603
[7] Cordes, H. O.,Spectral Theory of Linear Differential Operators and Comparison Algebras, London Math. Soc. Lecture Note Series 76, Cambridge Univ. Press, 1987. · Zbl 0727.35092
[8] Takayuki, Furuta, Equivalent norm inequalities to Löwner-Heinz theorem, to appear inRev. Math. Phys. · Zbl 0725.47008
[9] FackT.,J. Operator Theory 7, 307-333 (1982).
[10] FackT. and KosakiH.,Pacific J. Math. 123, 269-300 (1986).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.