## Comparison principles and Liouville theorems for prescribed mean curvature equations in unbounded domains.(English)Zbl 0705.49022

The purpose is to give some comparison principles and Liouville theorems for prescribed mean curvature equations in unbounded domains.
Let $$\Omega \subset {\mathbb{R}}^ 2$$ (bounded or unbounded), for every $$R>0$$, let $$B_ R=\{x\in {\mathbb{R}}^ n| | x| <R\}$$, $${\tilde \Omega}{}_ R=\Omega \cap B_ R$$, for $$u\in C^ 1(\Omega)$$, Tu denotes the vector (Du/$$\sqrt{1+| Du|^ 2})$$, where Du is the gradient vector of u.
Theorem 2.3. Let $$\partial \Omega =\Sigma^{\alpha}+\Sigma^{\beta}$$ be a decomposition of $$\partial \Omega$$ such that $$\Sigma^{\beta}$$ is of class $$C^ 1$$ and for every u,v$$\in C^ 2(\Omega)\cap C^ 1(\Omega \cup \Sigma^{\beta})\cap C^ 0({\bar \Omega})$$, let $$M(R)=\max_{{\tilde \Omega}_ R}| u-v|$$. Suppose that
(i) div Tu$$=div Tv$$ in $$\Omega$$
(ii) $$u=v$$ on $$\Sigma^{\alpha}$$
(iii) $$Tu\cdot \nu =Tv\cdot \nu$$ on $$\Sigma^{\beta}$$ where $$\nu$$ is the outer normal of $$\Sigma^{\beta}$$
(iv) $$M(R)=O(\sqrt{\log R})$$ as $$R\to \infty.$$
Then if $$\partial \Omega =\Sigma^{\beta}$$, we have $$u(x)\equiv v(x)+text{constant}$$, otherwise $$u(x)=v(x).$$
Other results are similar as above. The main idea of our theorems depends on the following inequality only: $(*)\quad (Tu-Tv)\cdot (Du-Dv)\geq | Tu-Tv|^ 2.$ Consider the equation in divergence form: div A(x,w,Dw)$$=f(x,w,Dw)$$. If there exists a positive constant $$\lambda$$ such that $| A(x,w,Dw)-A(x,Dw',Dw')| \leq \lambda (Dw-Dw')\cdot (A(x,w,Dw)-A(x,w',Dw'))$ and $$(Dw-Dw')\cdot (A(x,w,Dw)-A(x,w',Dw'))=0$$ if and only if $$Dw=Dw'$$. In this case we have similar results.
The reader may find the inequality (*) in a paper of L.-F. Tam [“On the uniqueness of capillary surfaces”, Variational methods for free surface interfaces, Proc. Conf., Menlo Park/Calif. 1985, 99-108 (1987)] where C. Wong is another spelling of the author’s name.
Reviewer: Jenn-Fang Hwang

### MSC:

 49Q05 Minimal surfaces and optimization 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
Full Text:

### References:

 [1] S.Y. Cheng - S.T. Yau , Differential equations on Riemann manifolds and their geometric applications . Comm. Pure. Appl. Math ., XXVIII ( 1975 ), pp. 333 - 354 . MR 385749 | Zbl 0312.53031 · Zbl 0312.53031 [2] P. Concus - R. Finn , On capillary free surfaces in the absence of gravity . Acta Math. 132 ( 1974 ), pp. 177 - 198 . MR 670441 | Zbl 0382.76003 · Zbl 0382.76003 [3] P. Concus - R. Finn , On capillary free surfaces in a gravitational field . Acta Math. 132 ( 1974 ), pp. 207 - 223 . MR 670443 | Zbl 0382.76005 · Zbl 0382.76005 [4] D. Gilbarg - N.S. Trudinger , Elliptic Partial Differential Equations of Second Order , Springer-Verlag , New York , 1977 . MR 473443 | Zbl 0361.35003 · Zbl 0361.35003 [5] E. Giusti , Minimal Surfaces and Functions of Bounded Variation , Birkhäuser , Boston - Basel - Stuttgart , 1984 . MR 775682 | Zbl 0545.49018 · Zbl 0545.49018 [6] M. Meier , Liouville theorems for nonlinear elliptic equations and systems , Manuscripta Math. 29 ( 1979 ), pp. 207 - 228 . MR 545042 | Zbl 0426.35034 · Zbl 0426.35034 [7] M. Meier , Liouville theorems for nondiagonal elliptic systems in arbitrary dimensions , Math. Z. 176 ( 1981 ), pp. 123 - 133 . MR 606175 | Zbl 0454.35034 · Zbl 0454.35034 [8] J.C.C. Nitsche , On new results in the theory of minimal surfaces , Bull. Amer. Math. Soc. , 71 ( 1965 ), pp. 195 - 270 . Article | MR 173993 | Zbl 0135.21701 · Zbl 0135.21701 [9] J.C.C. Nitsche , Vorlesungen über Minimalfläschen , Springer-Verlag , Berlin - Heidelberg - New York , 1975 . MR 448224 | Zbl 0319.53003 · Zbl 0319.53003 [10] R. Osserman , A Survey of Minimal Surfaces , Van Nostrand - Reinhold . New York , 1969 . MR 256278 | Zbl 0209.52901 · Zbl 0209.52901 [11] L.A. Peletier - J. Serrin , Gradient bounds and Liouville theorems for quasilinear elliptic equations . Annali Scuola Norm. Sup. Pisa , IV , 5 , ( 1978 ), pp. 65 - 104 . Numdam | MR 481493 | Zbl 0383.35025 · Zbl 0383.35025 [12] M.H. Protter - H.F. Weinberger , Maximum Principles in Differential Equations . Englewood N.J. Cliffs , Prentice-Hall , 1967 . MR 219861 | Zbl 0153.13602 · Zbl 0153.13602 [13] D. Sigel , Height estimates for capillary surfaces . Pacific J. Math. 88 , ( 1980 ), pp. 471 - 515 . Article | MR 607989 | Zbl 0411.35043 · Zbl 0411.35043 [14] L.F. Tam , On the uniqueness of capillary surfaces without gravity over an infinite strip , Indiana Univ. Math. J. , 36 ( 1987 ), pp. 79 - 89 . MR 876992 | Zbl 0678.49037 · Zbl 0678.49037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.