zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Geometry of the modulational instability. III: Homoclinic orbits for the periodic sine-Gordon equation. (English) Zbl 0705.58026
Summary: [See also the authors, part I: Local analysis, part II: Global analysis. Univ. Arizona, Preprint (1987).] The homoclinic geometric structure of the integrable sine-Gordon equation under periodic boundary conditions is developed. Specifically, focus is given to orbits homoclinic to N-tori. Simple examples of such homoclinic orbits are constructed and a physical interpretation of these states is given. A labeling is provided which identifies and catalogues all such orbits. These orbits are related in a one-to-one manner to linearized instabilities. Explicit formulas for all homoclinic orbits are given in terms of Bäcklund transformations.

MSC:
37J35Completely integrable systems, topological structure of phase space, integration methods
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
37C75Stability theory
81Q05Closed and approximate solutions to quantum-mechanical equations
37A30Ergodic theorems, spectral theory, Markov operators
37K35Lie-Bäcklund and other transformations
WorldCat.org
Full Text: DOI
References:
[1] Ablowitz, M. J.; Kaup, D.; Newell, A.; Segur, H.: Phys. rev. Lett.. 30, 1262 (1973)
[2] Baker, H. F.: Proc. R. Soc. London ser. A. 118, 584-593 (1928)
[3] Benjamin, T. B.: The disintegration of wavetrains on deep water. J. fluid mech. 27, 417 (1966)
[4] Benjamin, T. B.: Instabilities of periodic wave trains in nonlinear dispersive systems. Proc. R. Soc. London ser. A 299, 59-75 (1967)
[5] Benney, D. J.; Newell, A.: Propagation of nonlinear wave envelopes. J. math. Phys. 46, 133-139 (1967) · Zbl 0153.30301
[6] Bishop, A. R.; Fesser, K.; Lomdahl, P. S.; Kerr, W. C.; Williams, M. B.; Tullinger, S. E.: Coherent spatial structure versus time chaos in a perturbed sine-Gordon system. Phys. rev. Lett. 50, 1095-1099 (1983)
[7] Bishop, A. R.; Fesser, K.; Lomdahl, P. S.; Trullinger, S. E.: Influence of solitons in the initial state on chaos and the driven, damped sine-Gordon system. Physica D 7, 259-279 (1983) · Zbl 1194.35344
[8] Bishop, A. R.; Forest, M. G.; Mclaughlin, D. W.; Ii, E. A. Overman: Quasi-periodic route to chaos in a near integrable PDE. Physica D 23, 293-328 (1986) · Zbl 0616.65135
[9] Bishop, A. R.; Forest, M. G.; Mclaughlin, D. W.; Ii, E. A. Overman: A quasi-periodic route to chaos in a near-integrable PDE: homoclinic crossings. Phys. lett. A 127, 335-340 (1988)
[10] Bishop, A. R.; Grüner, G.; Nicolaenko, B.: Spatio-temporal coherence and chaos in physical systems. Physica D 23 (1986) · Zbl 0604.00013
[11] Campbell, D.; Rose, H.: Order in chaos. Physica D 7 (1983) · Zbl 0536.00007
[12] Chen, H. H.; Lee, Y. C.; Tracy, E.: Study of quasiperiodic solutions of the nonlinear Schrödinger equation and the nonlinear modulational instability. Phys. rev. Lett. 53, 218-221 (1984)
[13] Date, E.: Multisoliton solutions and quasi-periodic solutions of nonlinear equations of sine-Gordon type. Osaka J. Math. 19, 125-128 (1982) · Zbl 0505.35076
[14] Doolen, G. D.; Dubois, D. F.; Rose, H.: Coherence and chaos in caviton turbulence. Phys. rev. Lett. 51, 335 (1983)
[15] Ercolani, N. M.; Flaschka, H.: The geometry of the Hill equation and of the Neumann system. Phil. trans. R. soc. London ser. A 315, 405-422 (1985) · Zbl 0582.35105
[16] Ercolani, N. M.; Forest, M. G.: The geometry of real sine-Gordon wavetrains. Comm. math. Phys. 99, 1-45 (1985) · Zbl 0591.35065
[17] Ercolani, N. M.; Forest, M. G.; Mclaughlin, D. W.: Modulational instabilities of periodic sine-Gordon waves: a geometric analysis. Lect. appl. Math. 23, 149-165 (1986) · Zbl 0597.58011
[18] Ercolani, N. M.; Forest, M. G.; Mclaughlin, D. W.: The origin and saturation of modulational instabilities. Physica D 18, 472-474 (1986) · Zbl 0596.35112
[19] Ercolani, N. M.; Forest, M. G.; Mclaughlin, D. W.: Geometry of the modulational instability I. Local analysis. University of arizona preprint (1987) · Zbl 0668.35064
[20] Ercolani, N. M.; Forest, M. G.; Mclaughlin, D. W.: Geometry of the modulational instability II. Global analysis. University of arizona preprint (1987) · Zbl 0668.35064
[21] Finkel, A.: Remarks on an eigenvalue problem associated to the sine-Gordon equation. Thesis (1982)
[22] Flaschka, H.; Mclaughlin, D. W.: Some comments on Bäcklund transformations and inverse scattering method. Springer lecture notes, no. 515 (1975) · Zbl 0346.35027
[23] Forest, M. G.; Mclaughlin, D. W.: Spectral theory for the periodic sine-Gordon equation: a concrete viewpoint. J. math. Phys. 23, 1248-1277 (1982) · Zbl 0498.35072
[24] Forest, M. G.; Mclaughlin, D. W.: Modulation of sine-Gordon and sinh-Gordon wavetrains. Stud. appl. Math. 68, 11-59 (1983) · Zbl 0541.35071
[25] Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical system, and bifurcations of vector fields. (1983) · Zbl 0515.34001
[26] J. Marsden, private communication.
[27] Mckean, H. P.: Stability for the Korteweg-de Vries equation. Comm. pure appl. Math. 30, 347-353 (1977) · Zbl 0335.58013
[28] Mckean, H. P.: The sine-Gordon and sinh-Gordon equations on the circle. Comm. pure appl. Math. 34, 197-257 (1981) · Zbl 0467.35078
[29] Mckean, H. P.; Trubowitz, E.: Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. pure appl. Math. 29, 143-226 (1976) · Zbl 0339.34024
[30] Moon, H. T.; Goldman, M. V.: Intermittency and solitons in the driven dissipative NLS equation. Phys. rev. Lett. 53, 1821 (1984)
[31] Moon, H. T.; Huerre, P.; Redekopp, L. G.: Transitions to chaos in the Ginzburg-Landau equation. Physica D 7, 135 (1983) · Zbl 0558.58030
[32] E.A. Overman II, private communication (1986).
[33] Ii, E. A. Overman; Mclaughlin, D. W.; Bishop, A. R.: Coherence and chaos in the driven, damped sine-Gordon equation: measurement of soliton spectrum. Physica D 19, 1-41 (1986) · Zbl 0615.35071
[34] Takhtajian, L. A.; Faddeev, L. D.: Essentially nonlinear one-dimensional model of classical field theory. Theor. math. Phys. 21, 1046 (1974)
[35] Wadati, M.; Sanuki, H.; Konno, K.: Relationships among inverse method, Bäcklund transformation, and an infinite number of conservation laws. Prog. theor. Phys. 53, 419-436 (1975) · Zbl 1079.35506
[36] Whitham, G. B.: Linear and nonlinear waves. (1974) · Zbl 0373.76001
[37] Whittaker, E. T.; Watson, G. N.: Modern analysis. (1902) · Zbl 33.0390.01
[38] Zakharov, V. E.: Ph.d. thesis. (1966)
[39] Akhmediev, N. N.; Eleonshii, V. M.; Kulagin, N. E.: Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions. Zh. eksp. Teor. fiz. 89, 1542-1551 (1985)
[40] Akhmediev, N. N.; Korneev, V. I.; Mitskevich, N. V.: N-modulation signals in a single-mode optical waveguide under nonlinear conditions. Zh. eksp. Teor. fiz. 94, 159-170 (1988)
[41] Bishop, A. R.; Forest, M. G.; Mclaughlin, D. W.; Ii, E. A. Overman: A modal representation of chaotic attractors for the driven damped pendulum chain. Phys. lett. A 144, 335-340 (1988)
[42] Driscoll, C.; O’neill, T.: Explanations of instabilities on a Fermi-pasta-Ulam lattice. Phys. rev. Lett. 37, 69-72 (1976)
[43] Flesch, R.; Forest, M. G.; Sinha, A.: Numerical IST for the periodic sine-Gordon equation: theta function solutions and their linearized stability. (1990) · Zbl 0728.65098
[44] Kovacic, G.; Wiggins, S.: Orbits homoclinic to resonances: chaos in a model of the forced and damped sine-Gordon equation. (1989)
[45] Moon, H. T.: Homoclinic crossings and pattern selection. Phys. rev. Lett. 64, 412-414 (1990)
[46] Tracy, E.; Chen, H. H.: Nonlinear self-modulation: an exact solvale model. Phys. rev. A 37, 815 (1988)