zbMATH — the first resource for mathematics

Optimization design by genetic algorithm controller for trajectory control of a 3-RRR parallel robot. (English) Zbl 07052085
Summary: In order to improve the control precision and robustness of the existing proportion integration differentiation (PID) controller of a 3-Revolute-Revolute-Revolute (3-RRR) parallel robot, a variable PID parameter controller optimized by a genetic algorithm controller is proposed in this paper. Firstly, the inverse kinematics model of the 3-RRR parallel robot was established according to the vector method, and the motor conversion matrix was deduced. Then, the error square integral was chosen as the fitness function, and the genetic algorithm controller was designed. Finally, the control precision of the new controller was verified through the simulation model of the 3-RRR planar parallel robot – built in SimMechanics – and the robustness of the new controller was verified by adding interference. The results show that compared with the traditional PID controller, the new controller designed in this paper has better control precision and robustness, which provides the basis for practical application.
Reviewer: Reviewer (Berlin)
93C85 Automated systems (robots, etc.) in control theory
70B15 Kinematics of mechanisms and robots
68T40 Artificial intelligence for robotics
70E60 Robot dynamics and control of rigid bodies
Full Text: DOI
[1] Merlet, J.P.; ; Parallel Robots: Norwell, MA, USA 2000; . · Zbl 0983.70002
[2] Salas, F.G.; Santibáñez, V.; Llama, M.A.; Fuzzy-Tuned PD Tracking Control of a 3-RRR Parallel Manipulator: Stability Analysis and Simulations; Intell. Autom. Soft Comput.: 2014; Volume 20 ,159-182.
[3] Fichter, E.F.; A Stewart Platform-Based Manipulator: General Theory and Practical Construction; Int. J. Robot Res.: 1986; Volume 5 ,157-182.
[4] Lee, K.M.; Yien, C.; Design and control of a prototype platform manipulator for work holding and work handling applications; J. Mech. Work. Technol.: 1989; Volume 20 ,305-314.
[5] Wang, R.; Zhang, X.; Parameters optimization and experiment of a planar parallel 3-dof nanopositioning system; IEEE Trans. Ind. Electron.: 2017; Volume 99 ,2388-2396.
[6] Gutierrez, M.N.C.; Dimensional synthesis of 3rrr planar parallel robots for well-conditioned workspace; IEEE Lat. Am. Trans.: 2015; Volume 13 ,409-415.
[7] Gosselin, C.; Angeles, J.; The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator; J. Mech. Trans. Autom. Design: 1988; Volume 110 ,35-41.
[8] Kucuk, S.; Energy minimization for 3-rrr fully planar parallel manipulator using particle swarm optimization; Mech. Mach. Theory: 2013; Volume 62 ,129-149.
[9] Varedi-Koulaei, S.M.; Daniali, H.M.; Farajtabar, M.; Fathi, B.; Shafiee-Ashtiani, M.; Reducing the undesirable effects of joints clearance on the behavior of the planar 3-rrr parallel manipulators; Nonlinear Dyn.: 2016; Volume 86 ,1-16.
[10] Firmani, F.; Podhorodeski, R.P.; Singularity analysis of planar parallel manipulators based on forward kinematic solutions; Mech. Mach. Theory: 2009; Volume 44 ,1386-1399. · Zbl 1178.70021
[11] Kroger, R.; Binder, S.; Accuracy analysis of 3-dof planar parallel robots; Mech. Mach. Theory: 2008; Volume 43 ,445-458.
[12] Gao, M.W.; Design, Analysis and Control on the Planar Parallel Robot; Master’s Thesis: Guangzhou, China 2012; .
[13] Zhang, Q.; Fan, X.; Zhang, X.; Dynamic analysis of planar 3-rrr flexible parallel robots with dynamic stiffening; Shock Vib.: 2014; Volume 1 ,154-159.
[14] Yu, Y.Q.; Du, Z.C.; Yang, J.X.; Li, Y.; An experimental study on the dynamics of a 3-rrr flexible parallel robot; IEEE Trans. Robot.: 2011; Volume 27 ,992-997.
[15] Moezi, S.A.; Rafeeyan, M.; Zakeri, E.; Zare, A.; Simulation and experimental control of a 3-rpr parallel robot using optimal fuzzy controller and fast on/off solenoid valves based on the pwm wave; ISA Trans.: 2016; Volume 61 ,265.
[16] Shang, C.; Tao, G.; Meng, D.; Adaptive robust trajectory tracking control of a parallel manipulator driven by pneumatic cylinders; Adv. Mech. Eng.: 2016; Volume 8 .
[17] Abu-Dakka, F.J.; Assad, I.F.; Alkhdour, R.M.; Abderahim, M.; Statistical evaluation of an evolutionary algorithm for minimum time trajectory planning problem for industrial robots; Int. J. Adv. Manuf. Technol.: 2017; Volume 89 ,389-406.
[18] Stan, S.D.; Gogu, G.; Manic, M.; Balan, R.; Rad, C.; Fuzzy Control of a 3 Degree of Freedom Parallel Robot; Technological Developments in Education and Automation: Dordrecht, The Netherlands 2010; ,437-442.
[19] Noshadi, A.; Mailah, M.; Zolfagharian, A.; Active force control of 3-RRR planar parallel manipulator; Proceedings of the IEEE International Conference on Mechanical and Electrical Technology: ; ,77-81. · Zbl 1246.70005
[20] Noshadi, A.; Mailah, M.; Zolfagharian, A.; Intelligent active force control of a 3-rrr parallel manipulator incorporating fuzzy resolved acceleration control; Appl. Math. Model.: 2012; Volume 36 ,2370-2383. · Zbl 1246.70005
[21] Pham, C.V.; Wang, Y.N.; Robust adaptive trajectory tracking sliding mode control based on neural networks for cleaning and detecting robot manipulators; J. Intell. Robot. Syst.: 2015; Volume 79 ,101-114.
[22] Kuo, Y.L.; Lin, T.P.; Wu, C.Y.; Experimental and numerical study on the semi-closed loop control of a planar parallel robot manipulator; Math. Probl. Eng.: 2014; Volume 5 ,1-9. · Zbl 1407.93261
[23] Song, B.; Wang, Z.; Sheng, L.; A new genetic algorithm approach to smooth path planning for mobile robots; Assem. Autom.: 2016; Volume 36 ,138-145.
[24] Wang, X.; Shi, Y.; Ding, D.; Gu, X.; Double global optimum genetic algorithm-particle swarm optimization-based welding robot path planning; Eng. Optim.: 2016; Volume 48 ,299-316.
[25] Lu, X.; Liu, M.; Optimal design and tuning of pid-type interval type-2 fuzzy logic controllers for delta parallel robots; Int. J. Adv. Robot Syst.: 2016; Volume 13 ,96.
[26] Lu, X.G.; Liu, M.; Liu, J.X.; Design and optimization of interval type-2 fuzzy logic controller for delta parallel robot trajectory control; Int. J. Fuzzy Syst.: 2017; Volume 19 ,190-206.
[27] Yuan, L.; ; Modern Permanent Magnet Synchronous Motor Control Theory and MATLAB Simulation: Beijing, China 2016; .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.