zbMATH — the first resource for mathematics

The computation of factorization invariants for affine semigroups. (English) Zbl 07053476

20M13 Arithmetic theory of semigroups
20M14 Commutative semigroups
05A17 Combinatorial aspects of partitions of integers
Full Text: DOI
[1] The 4ti2 team, 4ti2-a software package for algebraic, geometric and combinatorial problems on linear spaces, http://www.4ti2.de.
[2] P. A. García-Sánchez and A. Sánchez-R.-Navarro, 4ti2gap, GAP wrapper for 4ti2, https://github.com/gap-packages/4ti2gap.
[3] Barron, T.; O’Neill, C.; Pelayo, R., On dynamic algorithms for factorization invariants in numerical monoids, Math. Comput., 86, 2429-2447, (2017) · Zbl 1385.20019
[4] Blanco, V.; García-Sánchez, P. A.; Geroldinger, A., Semigroup theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids, Illinois J. Math., 55, 1385-1414, (2011) · Zbl 1279.20072
[5] W. Bruns, B. Ichim, T. Römer and C. Söger, Normaliz, Algorithms for rational cones and affine monoids, http://www.math.uos.de/normaliz. · Zbl 1203.13033
[6] Bruns, W.; Ichim, B.; Söger, C., The power of pyramid decompositions in Normaliz, J. Symb. Comput., 74, 513-536, (2016) · Zbl 1332.68298
[7] Chapman, S. T.; García-Sánchez, P. A.; Llena, D., The catenary and tame degree of numerical monoids, Forum Math., 21, 117-129, (2009) · Zbl 1177.20070
[8] Chapman, S.; García-Sánchez, P.; Llena, D.; Malyshev, A.; Steinberg, D., On the delta set and the Betti elements of a BF-monoid, Arab J. Math., 1, 53-61, (2012) · Zbl 1277.20071
[9] Chapman, S.; García-Sánchez, P.; Llena, D.; Ponomarenko, V.; Rosales, J., The catenary and tame degree in finitely generated commutative cancellative monoids, Manuscr. Math., 120, 253-264, (2006) · Zbl 1117.20045
[10] Chapman, S.; Corrales, M.; Miller, A.; Miller, C.; Patel, D., The catenary and tame degrees on a numerical monoid are eventually periodic, J. Aust. Math. Soc., 97, 3, 289-300, (2014) · Zbl 1310.20052
[11] M. Costantini and W. de Graaf, singular, The GAP interface to Singular, Version 12.04.28 (2012), (GAP package), http://www.gap-system.org/HostedGap-Packages/singular/.
[12] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, (2015), Springer: Springer, Cham · Zbl 1335.13001
[13] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-0 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2016).
[14] M. Delgado, P. A. García-Sánchez and J. Morais, NumericalSgps, a package for numerical semigroups, Version 1.0.1 (2015), (Refereed GAP package), http://www.gap-system.org.
[15] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel, T. Koch, S. J. Maher, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, S. Vigerske, D. Weninger, M. Winkler, J. T. Witt and J. Witzig, The SCIP Optimization Suite 3.2, ZIB-Report (2016) 15-60.
[16] Gao, W.; Geroldinger, A.; Schmid, W. A., Local and global tameness in Krull monoids, Commun. Algebra, 43, 262-296, (2015) · Zbl 1320.20057
[17] The GAP Group, GAP — Groups, Algorithms, and Programming, 2014, http://www.gap-system.org.
[18] García-Sánchez, P.; Llena, D.; Moscariello, A., Delta sets for nonsymmetric numerical semigroups with embedding dimension three, Forum Math., 30, 1, 15-30, (2018) · Zbl 06825353
[19] García-García, J. I.; Moreno-Frías, M. A.; Vigneron-Tenorio, A., Computation of the \(\omega\)-primality and asymptotic \(\omega\)-primality, applications to numerical semigroups, Israel J. Math., 206, 395-411, (2015) · Zbl 1337.20067
[20] García-Sánchez, P. A., Multiplicative Ideal Theory and Factorization Theory: Commutative and Non-commutative Perspectives, 170, An overview of the computational aspects of nonunique factorization invariants, Springer
[21] García-Sánchez, P. A.; Ojeda, I.; Sánchez-R.-Navarro, A., Factorization invariants in half-factorial affine semigroups, Internat. J. Algebra Comput., 23, 111-122, (2013) · Zbl 1272.20060
[22] Geroldinger, A.; Halter-Koch, F., Non-Unique Factorizations: Algebraic, Combinatorial, and Analytic Theory, (2006), Chapman and Hall/CRC: Chapman and Hall/CRC, Boca Raton, Florida · Zbl 1113.11002
[23] S. Gutsche, M. Horn and C. Söger, NormalizInterface, GAP wrapper for Normaliz, Version 0.9.5 (2016), (GAP package), https://gap-packages.github.io/NormalizInterface.
[24] Herzog, J., Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math., 3, 175-193, (1970) · Zbl 0211.33801
[25] Kainrath, F.; Lettl, G., Geometric notes on monoids, Semigroup Forum, 61, 298-302, (2000) · Zbl 0964.20037
[26] Kruskal, J. B., On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc., 7, 48-50, (1956) · Zbl 0070.18404
[27] O’Neill, C., On factorization invariants and Hilbert functions, J. Pure Appl. Algebra, 221, 12, 3069-3088, (2017) · Zbl 1406.20063
[28] C. O’Neill and R. Pelayo, Factorization invariants in numerical monoids, Algebraic and Geometric Methods in Discrete Mathematics, pp. 231-249, Contemp. Math., p. 685, Amer. Math. Soc., Providence, RI, 2017. Available at arXiv:math.AC/1508.00128. · Zbl 1360.05130
[29] Rédei, L., The Theory of Finitely Generated Commutative Semigroups, (1965), Pergamon: Oxford-Edinburgh-New York, Pergamon · Zbl 0133.27904
[30] Rosales, J. C.; García-Sánchez, P. A., Finitely Generated Commutative Monoids, (1999), Nova Science Publishers · Zbl 0966.20028
[31] Rosales, J.; García-Sánchez, P., Developments in Mathematics, 20, Numerical semigroups, (2009), Springer-Verlag: Springer-Verlag, New York · Zbl 1220.20047
[32] Rosales, J. C.; García-Sánchez, P. A.; García-García, J. I., Irreducible ideals of finitely generated commutative monoids, J. Algebra, 238, 328-344, (2001) · Zbl 1001.20050
[33] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.2), 2016, http://www.sagemath.org.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.