zbMATH — the first resource for mathematics

Effects of shape and misalignment of fibers on the failure response of carbon fiber reinforced polymers. (English) Zbl 07053706
Summary: An integrated computational framework is presented for the automated modeling and simulation of the failure response of carbon fiber reinforced polymers (CFRPs) with arbitrary-shaped, randomly-misaligned, embedded fibers. The proposed approach relies on a new packing/relocation-based reconstruction algorithm to synthesize realistic 3D representative volume elements (RVEs) of CFRP. A non-iterative mesh generation algorithm is then employed to create high-quality finite element models of each RVE. The failure response of CFRP is simulated using ductile and cohesive-contact damage models for the epoxy matrix and along fiber-matrix interfaces, respectively. In addition to studying the impact of fiber misalignments, this computational framework is employed to investigate the effect of cross-sectional geometry of fibers (circular versus oval shaped) on the strength, ductility, and toughness of CFRP subject to tensile and compressive loads applied transverse to the fibers direction.
74 Mechanics of deformable solids
HYPLAS; Triangle
Full Text: DOI
[1] Freeman, WT, The use of composites in aircraft primary structure, Compos Eng, 3, 767-775, (1993)
[2] Morgan P (2005) Carbon fibers and their composites. CRC Press, Boca Raton
[3] Chung D (2012) Carbon fiber composites. Butterworth-Heinemann, Oxford
[4] Klier, T.; Linn, J., Corporate average fuel economy standards and the market for new vehicles, Resour Futur Discuss Pap, 3, 445-462, (2010)
[5] Buffiere, JY; Maire, E.; Verdu, C.; Cloetens, P.; Pateyron, M.; Peix, G.; Baruchel, J., Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron x-ray microtomography, Mater Sci Eng A, 234, 633-635, (1997)
[6] Kastner, J.; Harrer, B.; Degischer, HP, High resolution cone beam x-ray computed tomography of 3D-microstructures of cast Al-alloys, Mater Charact, 62, 99-107, (2011)
[7] Martin-Herrero, J.; Germain, Ch, Microstructure reconstruction of fibrous C/C composites from x-ray microtomography, Carbon, 45, 1242-1253, (2007)
[8] Sheidaei, A.; Baniassadi, M.; Banu, M.; Askeland, P.; Pahlavanpour, M.; Kuuttila, N.; Pourboghrat, F.; Drzal, LT; Garmestani, H., 3-D microstructure reconstruction of polymer nano-composite using FIB-SEM and statistical correlation function, Compos Sci Technol, 80, 47-54, (2013)
[9] Ahmadian, H.; Liang, B.; Soghrati, S., An integrated computational framework for simulating the failure response of carbon fiber reinforced polymer composites, Comput Mech, 60, 1033-1055, (2017)
[10] Xu, H.; Dikin, DA; Burkhart, C.; Chen, W., Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials, Comput Mater Sci, 85, 206-216, (2014)
[11] Xu, H.; Liu, R.; Choudhary, A.; Chen, W., A machine learning-based design representation method for designing heterogeneous microstructures, J Mech Des, 137, 051403, (2015)
[12] Beasley, D.; Martin, RR; Bull, DR, An overview of genetic algorithms: part 1. Fundamentals, Univ Comput, 15, 58-58, (1993)
[13] Matouš, K.; Lepš, M.; Zeman, J.; Šejnoha, M., Applying genetic algorithms to selected topics commonly encountered in engineering practice, Comput Methods Appl Mech Eng, 190, 1629-1650, (2000) · Zbl 0969.74050
[14] Yeong, CLY; Torquato, S., Reconstructing random media, Phys Rev E, 57, 495, (1998)
[15] Torquato S (2013) Random heterogeneous materials: microstructure and macroscopic properties, vol 16. Springer, Berlin · Zbl 0988.74001
[16] Ghosh, S.; Nowak, Z.; Lee, K., Quantitative characterization and modeling of composite microstructures by voronoi cells, Acta Mater, 45, 2215-2234, (1997)
[17] Fritzen, F.; Böhlke, T., Periodic three-dimensional mesh generation for particle reinforced composites with application to metal matrix composites, Int J Solids Struct, 48, 706-718, (2011) · Zbl 1236.74058
[18] Yu, M.; Zhu, P.; Ma, Y., Effects of particle clustering on the tensile properties and failure mechanisms of hollow spheres filled syntactic foams: a numerical investigation by microstructure based modeling, Mater Des, 47, 80-89, (2013)
[19] Soghrati, S.; Liang, B., Automated analysis of microstructural effects on the failure response of heterogeneous adhesives, Int J Solids Struct, 81, 250-261, (2016)
[20] Roberts, AP, Statistical reconstruction of three-dimensional porous media from two-dimensional images, Phys Rev E, 56, 3203, (1997)
[21] Jiang Z, Chen W, Burkhart C (2012) A hybrid approach to 3D porous microstructure reconstruction via Gaussian random field. In: ASME 2012 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp 1033-1042
[22] Sebdani, MM; Baniassadi, M.; Jamali, J.; Ahadiparast, M.; Abrinia, K.; Safdari, M., Designing an optimal 3D microstructure for three-phase solid oxide fuel cell anodes with maximal active triple phase boundary length (TPBL), Int J Hydrog Energy, 40, 15585-15596, (2015)
[23] Kumar, H.; Briant, CL; Curtin, WA, Using microstructure reconstruction to model mechanical behavior in complex microstructures, Mech Mater, 38, 818-832, (2006)
[24] Liu, Y.; Greene, MS; Chen, W.; Dikin, DA; Liu, WK, Computational microstructure characterization and reconstruction for stochastic multiscale material design, Comput Aided Des, 45, 65-76, (2013)
[25] Kumar, NC; Matouš, K.; Geubelle, PH, Reconstruction of periodic unit cells of multimodal random particulate composites using genetic algorithms, Comput Mater Sci, 42, 352-367, (2008)
[26] Collins, BC; Matous, K.; Rypl, D., Three-dimensional reconstruction of statistically optimal unit cells of multimodal particulate composites, Int J Multiscale Comput Eng, 8, 489-507, (2010)
[27] Shewchuk, JR, Delaunay refinement algorithms for triangular mesh generation, Comput Geom, 22, 21-74, (2002) · Zbl 1016.68139
[28] Yerry, MA; Shephard, MS, Automatic three-dimensional mesh generation by the modified-octree technique, Int J Numer Methods Eng, 20, 1965-1990, (1984) · Zbl 0547.65077
[29] Shephard, MS; Georges, MK, Automatic three-dimensional mesh generation by the finite octree technique, Int J Numer Methods Eng, 32, 709-749, (1991) · Zbl 0755.65116
[30] Lo, SH, A new mesh generation scheme for arbitrary planar domains, Int J Numer Methods Eng, 21, 1403-1426, (1985) · Zbl 0587.65081
[31] Lo, SH, Volume discretization into tetrahedra-II. 3D triangulation by advancing front approach, Comput Struct, 39, 501-511, (1991) · Zbl 0764.65073
[32] Babuska, I.; Melnek, JM, The partition of unity method, Int J Numer Methods Eng, 40, 727-758, (1997) · Zbl 0949.65117
[33] Oden, TJ; Duarte, CA; Zienkiewicz, OC, A new cloud-based hp finite element method, Comput Methods Appl Mech Eng, 153, 117-126, (1998) · Zbl 0956.74062
[34] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 46, 131-150, (1999) · Zbl 0955.74066
[35] Soghrati, S., Hierarchical interface-enriched finite element method: an automated technique for mesh-independent simulations, J Comput Phys, 275, 41-52, (2014) · Zbl 1349.82030
[36] Soghrati, S.; Ahmadian, H., 3D hierarchical interface-enriched finite element method: implementation and applications, J Comput Phys, 299, 45-55, (2015) · Zbl 1352.65551
[37] Lang, C.; Makhija, D.; Doostan, A.; Maute, K., A simple and efficient preconditioning scheme for heaviside enriched XFEM, Comput Mech, 54, 1357-1374, (2014) · Zbl 1311.74124
[38] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Model Simul Mater Sci Eng, 17, 043001, (2009)
[39] Hobbiebrunken, T.; Hojo, M.; Adachi, T.; Jong, C.; Fiedler, B., Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments, Compos Part A Appl Sci Manuf, 37, 2248-2256, (2006)
[40] Yang, L.; Yan, Y.; Liu, Y.; Ran, Z., Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression, Compos Sci Technol, 72, 1818-1825, (2012)
[41] Totry, E.; González, C.; LLorca, J., Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear, Compos Sci Technol, 68, 829-839, (2008) · Zbl 1159.74340
[42] Davila, CG; Camanho, PP; Rose, CA, Failure criteria for FRP laminates, J Compos Mater, 39, 323-345, (2005)
[43] Hinton MJ, Kaddour AS, Soden PD (2004) Failure criteria in fibre reinforced polymer composites: the world-wide failure exercise. Elsevier, New York
[44] Romanowicz, M., Progressive failure analysis of unidirectional fiber-reinforced polymers with inhomogeneous interphase and randomly distributed fibers under transverse tensile loading, Compos Part A Appl Sci Manuf, 41, 1829-1838, (2010)
[45] Canal, LP; Segurado, J.; LLorca, J., Failure surface of epoxy-modified fiber-reinforced composites under transverse tension and out-of-plane shear, Int J Solids Struct, 46, 2265-2274, (2009) · Zbl 1219.74043
[46] Tang, Z.; Wang, C.; Yu, Y., Failure response of fiber-epoxy unidirectional laminate under transverse tensile/compressive loading using finite-volume micromechanics, Compos Part B Eng, 79, 331-341, (2015)
[47] Melro, AR; Camanho, PP; Pires, FMA; Pinho, ST, Micromechanical analysis of polymer composites reinforced by unidirectional fibres: part II-micromechanical analyses, Int J Solids Struct, 50, 1906-1915, (2013)
[48] Soni, G.; Singh, R.; Mitra, M.; Falzon, BG, Modelling matrix damage and fibre-matrix interfacial decohesion in composite laminates via a multi-fibre multi-layer representative volume element (M\(^{2}\)RVE), Int J Solids Struct, 51, 449-461, (2014)
[49] Bienias, J.; Debski, H.; Surowska, B.; Sadowski, T., Analysis of microstructure damage in carbon/epoxy composites using FEM, Comput Mater Sci, 64, 168-172, (2012)
[50] Romanowicz, M., A numerical approach for predicting the failure locus of fiber reinforced composites under combined transverse compression and axial tension, Comput Mater Sci, 51, 7-12, (2012)
[51] Totry, E.; González, C.; LLorca, J., Prediction of the failure locus of c/peek composites under transverse compression and longitudinal shear through computational micromechanics, Compos Sci Technol, 68, 3128-3136, (2008)
[52] Yang, L.; Wu, Z.; Cao, Y.; Yan, Y., Micromechanical modelling and simulation of unidirectional fibre-reinforced composite under shear loading, J Reinf Plast Compos, 34, 72-83, (2015)
[53] Kim, TJ; Park, CK, Flexural and tensile strength developments of various shape carbon fiber-reinforced lightweight cementitious composites, Cement Concr Res, 28, 955-960, (1998)
[54] Park, SJ; Seo, MK; Shim, HB; Rhee, KY, Effect of different cross-section types on mechanical properties of carbon fibers-reinforced cement composites, Mater Sci Eng A, 366, 348-355, (2004)
[55] Xu, Z.; Li, J.; Wu, X.; Huang, Y.; Chen, L.; Zhang, G., Effect of kidney-type and circular cross sections on carbon fiber surface and composite interface, Compos Part A Appl Sci Manuf, 39, 301-307, (2008)
[56] Liu, X.; Wang, R.; Wu, Z.; Liu, W., The effect of triangle-shape carbon fiber on the flexural properties of the carbon fiber reinforced plastics, Mater Lett, 73, 21-23, (2012)
[57] Agnese, F.; Scarpa, F., Macro-composites with star-shaped inclusions for vibration damping in wind turbine blades, Compos Struct, 108, 978-986, (2014)
[58] Herráez, M.; González, C.; Lopes, CS; Villoria, RG; LLorca, J.; Varela, T.; Sánchez, J., Computational micromechanics evaluation of the effect of fibre shape on the transverse strength of unidirectional composites: an approach to virtual materials design, Compos Part A Appl Sci Manuf, 91, 484-492, (2016)
[59] Pathan, MV; Tagarielli, VL; Patsias, S., Effect of fibre shape and interphase on the anisotropic viscoelastic response of fibre composites, Compos Struct, 162, 156-163, (2017)
[60] Yang, L.; Liu, X.; Wu, Z.; Wang, R., Effects of triangle-shape fiber on the transverse mechanical properties of unidirectional carbon fiber reinforced plastics, Compos Struct, 152, 617-625, (2016)
[61] Jelf, PM; Fleck, NA, Compression failure mechanisms in unidirectional composites, J Compos Mater, 26, 2706-2726, (1992)
[62] Czabaj, MW; Riccio, ML; Whitacre, WW, Numerical reconstruction of graphite/epoxy composite microstructure based on sub-micron resolution x-ray computed tomography, Compos Sci Technol, 105, 174-182, (2014)
[63] Hillig, WB, Effect of fibre misalignment on fracture behaviour of fibre-reinforced composites, J Mater Sci, 29, 899-920, (1994)
[64] Knibbs, RH; Morris, JB, The effects of fibre orientation on the physical properties of composites, Composites, 5, 209-218, (1974)
[65] Swift, DG, Elastic moduli of fibrous composites containing misaligned fibres, J Phys D Appl Phys, 8, 223, (1975)
[66] Budiansky, B.; Fleck, NA, Compressive failure of fibre composites, J Mech Phys Solids, 41, 183-211, (1993)
[67] Kyriakides, S.; Arseculeratne, R.; Perry, EJ; Liechti, KM, On the compressive failure of fiber reinforced composites, Int J Solids Struct, 32, 689-738, (1995) · Zbl 0875.73189
[68] Bednarcyk, BA; Aboudi, J.; Arnold, SM, The effect of general statistical fiber misalignment on predicted damage initiation in composites, Compos Part B Eng, 66, 97-108, (2014)
[69] Li, Y.; Stier, B.; Bednarcyk, B.; Simon, JW; Reese, S., The effect of fiber misalignment on the homogenized properties of unidirectional fiber reinforced composites, Mech Mater, 92, 261-274, (2016)
[70] Liu, D.; Fleck, NA; Sutcliffe, MPF, Compressive strength of fibre composites with random fibre waviness, J Mech Phys Solids, 52, 1481-1505, (2004) · Zbl 1102.74015
[71] Basu, S.; Waas, AM; Ambur, DR, Compressive failure of fiber composites under multi-axial loading, J Mech Phys Solids, 54, 611-634, (2006) · Zbl 1120.74783
[72] Gutkin, R.; Pinho, ST; Robinson, P.; Curtis, PT, A finite fracture mechanics formulation to predict fibre kinking and splitting in CFRP under combined longitudinal compression and in-plane shear, Mech Mater, 43, 730-739, (2011)
[73] Yokozeki, T.; Ogasawara, T.; Ishikawa, T., Effects of fiber nonlinear properties on the compressive strength prediction of unidirectional carbon-fiber composites, Compos Sci Technol, 65, 2140-2147, (2005)
[74] Pimenta, S.; Gutkin, R.; Pinho, ST; Robinson, P., A micromechanical model for kink-band formation: part ii: analytical modelling, Compos Sci Technol, 69, 956-964, (2009)
[75] Numayr, KS; Al Rjoub, YS, Two analogous methods for estimating the compressive strength of fibrous composites, Compos Part B Eng, 50, 290-296, (2013)
[76] Pimenta, S.; Gutkin, R.; Pinho, ST; Robinson, P., A micromechanical model for kink-band formation: part i: experimental study and numerical modelling, Compos Sci Technol, 69, 948-955, (2009)
[77] Zhou, HW; Yi, HY; Gui, LL; Dai, GM; Peng, RD; Wang, HW; Mishnaevsky, L., Compressive damage mechanism of GFRP composites under off-axis loading: experimental and numerical investigations, Compos Part B Eng, 55, 119-127, (2013)
[78] Gutkin, R.; Pinho, ST; Robinson, P.; Curtis, PT, Micro-mechanical modelling of shear-driven fibre compressive failure and of fibre kinking for failure envelope generation in CFRP laminates, Compos Sci Technol, 70, 1214-1222, (2010)
[79] Bai, X.; Bessa, MA; Melro, AR; Camanho, PP; Guo, L.; Liu, WK, High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites, Compos Struct, 134, 132-141, (2015)
[80] Naya, F.; Herráez, M.; Lopes, CS; González, C.; Veen, S.; Pons, F., Computational micromechanics of fiber kinking in unidirectional FRP under different environmental conditions, Compos Sci Technol, 144, 26-35, (2017)
[81] Soghrati, S.; Nagarajan, A.; Liang, B., Conforming to interface structured adaptive mesh refinement: new technique for the automated modeling of materials with complex microstructures, Finite Elem Anal Des, 125, 24-40, (2017)
[82] Nagarajan, A.; Soghrati, S., Conforming to interface structured adaptive mesh refinement: 3D algorithm and implementation, Comput Mech, (2018) · Zbl 06981058
[83] Yang, M.; Nagarajan, A.; Liang, B.; Soghrati, S., New algorithms for virtual reconstruction of heterogenous microstructures, Comput Methods Appl Mech Eng, 338, 275-298, (2018)
[84] Hill R (1985) On the micro-to-macro transition in constitutive analyses of elastoplastic response at finite strain. In: Mathematical proceedings of the Cambridge philosophical society, vol 98. Cambridge University press, pp 579-590 · Zbl 0577.73019
[85] Kouznetsova, V.; Geers, MGD; Brekelmans, WAM, Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Int J Numer Methods Eng, 54, 1235-1260, (2002) · Zbl 1058.74070
[86] Terada, K.; Hori, M.; Kyoya, T.; Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches, Int J Solids Struct, 37, 2285-2311, (2000) · Zbl 0991.74056
[87] Inglis, HM; Geubelle, PH; Matouš, Kl, Boundary condition effects on multiscale analysis of damage localization, Philos Mag, 88, 2373-2397, (2008)
[88] Hooputra, H.; Gese, H.; Dell, H.; Werner, H., A comprehensive failure model for crashworthiness simulation of aluminium extrusions, Int J Crashworthiness, 9, 449-464, (2004)
[89] Sadowski, T.; Golewski, P.; Kneć, M., Experimental investigation and numerical modelling of spot welding-adhesive joints response, Compos Struct, 112, 66-77, (2014)
[90] de Souza Neto EA, Peric D, Owen DRJ (2011) Computational methods for plasticity: theory and applications. Wiley, Hoboken
[91] Hillerborg, A.; Modéer, M.; Petersson, PE, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cem Concr Res, 6, 773-781, (1976)
[92] Prantl A, Ruzicka J, Spaniel M, Moravec M, Dzugan J, Konopík Pl (2013) Identification of ductile damage parameters. In: SIMULIA community conference, Vienna, Austria
[93] Safaei, M.; Sheidaei, A.; Baniassadi, M.; Ahzi, S.; Mashhadi, MM; Pourboghrat, F., An interfacial debonding-induced damage model for graphite nanoplatelet polymer composites, Comput Mater Sci, 96, 191-199, (2015)
[94] Minnicino, MA; Santare, MH, Modeling the progressive damage of the microdroplet test using contact surfaces with cohesive behavior, Compos Sci Technol, 72, 2024-2031, (2012)
[95] Lee, HG; Brandyberry, M.; Tudor, A.; Matouš, K., Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography, Phys Rev E, 80, 061301, (2009)
[96] Fiedler, B.; Hojo, M.; Ochiai, S.; Schulte, K.; Ando, M., Failure behavior of an epoxy matrix under different kinds of static loading, Compos Sci Technol, 61, 1615-1624, (2001)
[97] Au, C.; Büyüköztürk, O., Peel and shear fracture characterization of debonding in FRP plated concrete affected by moisture, J Compos Constr, 10, 35-47, (2006)
[98] Horie, K.; Hiromichi, M.; Mita, I., Bonding of epoxy resin to graphite fibres, Fibre Sci Technol, 9, 253-264, (1976)
[99] Lau, D.; Büyüköztürk, O.; Buehler, MJ, Characterization of the intrinsic strength between epoxy and silica using a multiscale approach, J Mater Res, 27, 1787-1796, (2012)
[100] Almeida, SFM; Neto, ZSN, Effect of void content on the strength of composite laminates, Compos Struct, 28, 139-148, (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.