×

zbMATH — the first resource for mathematics

SPARC: accurate and efficient finite-difference formulation and parallel implementation of density functional theory: extended systems. (English) Zbl 1411.81029
Summary: As the second component of SPARC (Simulation Package for Ab-initio Real-space Calculations), we present an accurate and efficient finite-difference formulation and parallel implementation of Density Functional Theory (DFT) for extended systems. Specifically, employing a local formulation of the electrostatics, the Chebyshev polynomial filtered self-consistent field iteration, and a reformulation of the non-local force component, we develop a finite-difference framework wherein both the energy and atomic forces can be efficiently calculated to within desired accuracies in DFT. We demonstrate using a wide variety of materials systems that SPARC achieves high convergence rates in energy and forces with respect to spatial discretization to reference plane-wave result; exponential convergence in energies and forces with respect to vacuum size for slabs and wires; energies and forces that are consistent and display negligible ‘egg-box’ effect; accurate properties of crystals, slabs, and wires; and negligible drift in molecular dynamics simulations. We also demonstrate that the weak and strong scaling behavior of SPARC is similar to well-established and optimized plane-wave implementations for systems consisting up to thousands of electrons, but with a significantly reduced prefactor. Overall, SPARC represents an attractive alternative to plane-wave codes for performing DFT simulations of extended systems.
MSC:
81-08 Computational methods for problems pertaining to quantum theory
81V70 Many-body theory; quantum Hall effect
78A30 Electro- and magnetostatics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hohenberg, P.; Kohn, W., Phys. Rev., 136, B864-B871, (1964)
[2] Kohn, W.; Sham, L. J., Phys. Rev., 140, A1133-A1138, (1965)
[3] Jones, R. O.; Gunnarsson, O., Rev. Modern Phys., 61, 689, (1989)
[4] Ziegler, T., Chem. Rev., 91, 651-667, (1991)
[5] Kohn, W.; Becke, A. D.; Parr, R. G., J. Phys. Chem., 100, 12974-12980, (1996)
[6] Jones, R. O., Rev. Modern Phys., 87, 897, (2015)
[7] Kresse, G.; Furthmüller, J., Phys. Rev. B, 54, 11169-11186, (1996)
[8] Segall, M. D.; J. D. Lindan, P.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., J. Phys.: Condens. Matter., 14, 2717-2744, (2002)
[9] Gonze, X.; Beuken, J. M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G. M.; Sindic, L.; Verstraete, M.; Zerah, G.; Jollet, F.; Torrent, M.; Roy, A.; Mikami, M.; Ghosez, P.; Raty, J. Y.; Allan, D. C., Comput. Mater. Sci., 25, 15, 478-492, (2002)
[10] Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M., J. Phys.: Condens. Matter., 21, (2009), 19pp
[11] Ismail-Beigi, S.; Arias, T. A., Comput. Phys. Comm., 128, 1-45, (2000)
[12] Gygi, F., IBM J. Res. Dev., 52, 137-144, (2008)
[13] Cooley, J.; Tukey, J., Math. Comp., 19, 297, (1965)
[14] Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T.; Joannopoulos, J., Rev. Modern Phys., 64, 1045-1097, (1992)
[15] Hutter, J.; Lüthi, H. P.; Parrinello, M., Comput. Mater. Sci., 2, 244-248, (1994)
[16] Natan, A.; Benjamini, A.; Naveh, D.; Kronik, L.; Tiago, M. L.; Beckman, S. P.; Chelikowsky, J. R., Phys. Rev. B, 78, (2008)
[17] Suryanarayana, P.; Bhattacharya, K.; Ortiz, M., J. Mech. Phys. Solids, 61, 38-60, (2013)
[18] Bottin, F.; Leroux, S.; Knyazev, A.; Zérah, G., Comput. Mater. Sci., 42, 329-336, (2008)
[19] Tuckerman, M. E.; Yarne, D.; Samuelson, S. O.; Hughes, A. L.; Martyna, G. J., Comput. Phys. Comm., 128, 333-376, (2000)
[20] Goedecker, S., Rev. Modern Phys., 71, 1085-1123, (1999)
[21] Bowler, D. R.; Miyazaki, T., Rep. Progr. Phys., 75, (2012)
[22] Chelikowsky, J. R.; Troullier, N.; Saad, Y., Phys. Rev. Lett., 72, 1240, (1994)
[23] Castro, A.; Appel, H.; Oliveira, M.; Rozzi, C. A.; Andrade, X.; Lorenzen, F.; Marques, M. A.L.; Gross, E. K.U.; Rubio, A., Phys. Status Solidi B, 243, 2465-2488, (2006)
[24] Briggs, E.; Sullivan, D.; Bernholc, J., Phys. Rev. B, 54, 14362, (1996)
[25] Fattebert, J.-L., J. Comput. Phys., 149, 75-94, (1999)
[26] Shimojo, F.; Kalia, R. K.; Nakano, A.; Vashishta, P., Comput. Phys. Comm., 140, 303-314, (2001)
[27] Iwata, J.-I.; Takahashi, D.; Oshiyama, A.; Boku, T.; Shiraishi, K.; Okada, S.; Yabana, K., J. Comput. Phys., 229, 2339-2363, (2010)
[28] Pask, J. E.; Klein, B. M.; Fong, C. Y.; Sterne, P. A., Phys. Rev. B, 59, 12352-12358, (1999)
[29] White, S. R.; Wilkins, J. W.; Teter, M. P., Phys. Rev. B, 39, 5819, (1989)
[30] Tsuchida, E.; Tsukada, M., Phys. Rev. B, 52, 5573, (1995)
[31] Suryanarayana, P.; Gavini, V.; Blesgen, T.; Bhattacharya, K.; Ortiz, M., J. Mech. Phys. Solids, 58, 256-280, (2010)
[32] Motamarri, P.; Iyer, M.; Knap, J.; Gavini, V., J. Comput. Phys., 231, 6596-6621, (2012)
[33] Fang, J.; Gao, X.; Zhou, A., J. Comput. Phys., 231, 3166-3180, (2012)
[34] Arias, T. A., Rev. Modern Phys., 71, 267, (1999)
[35] Cho, K.; Arias, T.; Joannopoulos, J.; Lam, P. K., Phys. Rev. Lett., 71, 1808, (1993)
[36] Genovese, L.; Neelov, A.; Goedecker, S.; Deutsch, T.; Ghasemi, S. A.; Willand, A.; Caliste, D.; Zilberberg, O.; Rayson, M.; Bergman, A., J. Chem. Phys., 129, (2008)
[37] Skylaris, C.-K.; Haynes, P. D.; Mostofi, A. A.; Payne, M. C., J. Chem. Phys., 122, (2005)
[38] Bowler, D. R.; Choudhury, R.; Gillan, M. J.; Miyazaki, T., Phys. Status Solidi b, 243, 989-1000, (2006)
[39] Masud, A.; Kannan, R., Comput. Methods Appl. Mech. Engrg., 241, 112-127, (2012)
[40] Suryanarayana, P.; Bhattacharya, K.; Ortiz, M., J. Comput. Phys., 230, 5226-5238, (2011)
[41] Ghosh, S.; Suryanarayana, P., Comput. Phys. Comm., 212, 189-204, (2017)
[42] Ono, T.; Heide, M.; Atodiresei, N.; Baumeister, P.; Tsukamoto, S.; Blügel, S., Phys. Rev. B, 82, (2010)
[43] Bobbitt, N. S.; Schofield, G.; Lena, C.; Chelikowsky, J. R., Phys. Chem. Chem. Phys., 17, 31542-31549, (2015)
[44] Andrade, X.; Strubbe, D.; De Giovannini, U.; Larsen, A. H.; Oliveira, M. J.; Alberdi-Rodriguez, J.; Varas, A.; Theophilou, I.; Helbig, N.; Verstraete, M. J., Phys. Chem. Chem. Phys., 17, 31371-31396, (2015)
[45] Li, P.; Liu, X.; Chen, M.; Lin, P.; Ren, X.; Lin, L.; Yang, C.; He, L., Comput. Mater. Sci., 112, Part B, 503-517, (2016)
[46] E. Artacho, Periodic Linear Combination of Atomic Orbitals and Order-N Methods, Wiley Online Library, pp. 77-92.
[47] Zhou, Y.; Saad, Y.; Tiago, M. L.; Chelikowsky, J. R., Phys. Rev. E, 74, (2006)
[48] Kleinman, L.; Bylander, D., Phys. Rev. Lett., 48, 1425, (1982)
[49] Pask, J. E.; Sterne, P. A., Phys. Rev. B, 71, (2005)
[50] Ghosh, S.; Suryanarayana, P., J. Comput. Phys., 307, 634-652, (2016)
[51] Bloch, F., Z. Phys., 52, 555-600, (1929)
[52] Slater, J. C., The Self-consistent Field for Molecules and Solids, vol. 4, (1974), McGraw-Hill, New York
[53] Fang, H.-r.; Saad, Y., Numer. Linear Algebra Appl., 16, 197-221, (2009)
[54] Lin, L.; Yang, C., SIAM J. Sci. Comput., 35, S277-S298, (2013)
[55] Pratapa, P. P.; Suryanarayana, P., Chem. Phys. Lett., 635, 69-74, (2015)
[56] Banerjee, A. S.; Suryanarayana, P.; Pask, J. E., Chem. Phys. Lett., 647, 31-35, (2016)
[57] Suryanarayana, P., Chem. Phys. Lett., 584, 182-187, (2013)
[58] Suryanarayana, P., Chem. Phys. Lett., 555, 291-295, (2013)
[59] Harris, J., Phys. Rev. B, 31, 1770, (1985)
[60] Foulkes, W. M.C.; Haydock, R., Phys. Rev. B, 39, 12520, (1989)
[61] Suryanarayana, P.; Phanish, D., J. Comput. Phys., 275, 524-538, (2014)
[62] Hirose, K.; Ono, T.; Fujimoto, Y.; Tsukamoto, S., First-principles claculations in real-space formalism, (2005), Imperial College Press
[63] Pratapa, P. P.; Suryanarayana, P.; Pask, J. E., Comput. Phys. Comm., 200, 96-107, (2016)
[64] Ono, T.; Hirose, K., Phys. Rev. Lett., 82, 5016-5019, (1999)
[65] Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Smith, B. F.; Zhang, H., Petsc users manual, technical report ANL-95/11 - revision 3.4, (2013), Argonne National Laboratory
[66] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing, (1997), Birkhäuser Press), 163-202
[67] Mazziotti, D. A., Chem. Phys. Lett., 299, 473-480, (1999)
[68] Ahlberg, J. H.; Nilson, E. N.; Walsh, J. L., Mathematics in Science and Engineering, vol. 1, (1967), Academic Press New York · Zbl 0158.15901
[69] Zhou, Y.; Saad, Y.; L. Tiago, M.; Chelikowsky, J. R., J. Comput. Phys., 219, 172-184, (2006)
[70] Knyazev, A. V., SIAM J. Sci. Comput., 23, 517-541, (2001)
[71] Zhou, Y.; Chelikowsky, J. R.; Saad, Y., J. Comput. Phys., 274, 770-782, (2014)
[72] Perdew, J. P.; Wang, Y., Phys. Rev. B, 45, 13244, (1992)
[73] Ceperley, D. M.; Alder, B. J., Phys. Rev. Lett., 45, 566-569, (1980)
[74] Troullier, N.; Martins, J. L., Phys. Rev. B, 43, 1993-2006, (1991)
[75] Monkhorst, H. J.; Pack, J. D., Phys. Rev. B, 13, 5188, (1976)
[76] Golub, G. H.; Van Loan, C. F., Matrix Computations, vol. 3, (2012), JHU Press
[77] Paige, C. C.; Saunders, M. A., SIAM J. Numer. Anal., 12, 617-629, (1975)
[78] Lanczos, C., An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, (1950), United States Governm. Press Office · Zbl 0067.33703
[79] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, S.; Demmel, J.; Dongarra, J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D., LAPACK users’ guide, (1999), Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 0934.65030
[80] Watkins, D. S., Fundamentals of Matrix Computations, vol. 64, (2004), John Wiley & Sons
[81] Press, W. H., Numerical recipes 3rd edition: the art of scientific computing, (2007), Cambridge University Press
[82] Anderson, D. G., J. ACM, 12, 547-560, (1965)
[83] J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, 1994.
[84] Rapaport, D. C., The art of molecular dynamics simulation, (2004), Cambridge University Press New York, NY, USA · Zbl 1098.81009
[85] Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M., Comput. Phys. Comm., 180, 2582-2615, (2009)
[86] Gonze, X., Z. Kristallogr., 220, 558-562, (2005)
[87] Brázdová, V.; Bowler, D. R., Atomistic computer simulations: A practical guide, (2013), John Wiley & Sons · Zbl 1273.81003
[88] Gillan, M., J. Phys.: Condens. Matter., 1, 689, (1989)
[89] Marx, D.; Hutter, J., Modern methods and algorithms of quantum chemistry, 1, 301-449, (2000)
[90] Pask, J. E.; Sukumar, N.; Mousavi, S. E., Int. J. Multiscale Comput. Eng., 10, 83-99, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.