×

The numbers of positive solutions by the Lusternik-Schnirelmann category for a quasilinear elliptic system critical with Hardy terms. (English) Zbl 1475.35148

Summary: In this paper, we study the quasilinear elliptic system with Sobolev critical exponent involving both concave-convex and Hardy terms in bounded domains. By employing the technique introduced by V. Benci and G. Cerami [Arch. Ration. Mech. Anal. 114, No. 1, 79–93 (1991; Zbl 0727.35055)], we obtain at least \(\operatorname{cat}(\Omega) + 1\) distinct positive solutions.

MSC:

35J57 Boundary value problems for second-order elliptic systems
35B09 Positive solutions to PDEs
35B33 Critical exponents in context of PDEs
35J62 Quasilinear elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian

Citations:

Zbl 0727.35055

References:

[1] Chu, C.-M.; Tang, C.-L., Existence and multiplicity of positive solutions for semilinear elliptic systems with Sobolev critical exponents, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal, 71, 11, 5118-5130 (2009) · Zbl 1176.35064 · doi:10.1016/j.na.2009.03.080
[2] Ambrosetti, A.; Brézis, H.; Cerami, G., Combined effects of concave and convex nonlinearities in some elliptic problems, Journal of Functional Analysis, 122, 2, 519-543 (1994) · Zbl 0805.35028 · doi:10.1006/jfan.1994.1078
[3] Benmouloud, S.; Echarghaoui, R.; Sbaï, S. M., Multiplicity of positive solutions for a critical quasilinear elliptic system with concave and convex nonlinearities, Journal of Mathematical Analysis and Applications, 396, 1, 375-385 (2012) · Zbl 1255.35119 · doi:10.1016/j.jmaa.2012.05.078
[4] Hsu, T.-S., Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2688-2698 (2009) · Zbl 1167.35356 · doi:10.1016/j.na.2009.01.110
[5] Wu, T.-F., On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function, Journal of Mathematical Analysis and Applications, 318, 1, 253-270 (2006) · Zbl 1153.35036 · doi:10.1016/j.jmaa.2005.05.057
[6] Wang, L.; Wei, Q.; Kang, D., Existence and multiplicity of positive solutions to elliptic systems involving critical exponents, Journal of Mathematical Analysis and Applications, 383, 2, 541-552 (2011) · Zbl 1225.35092 · doi:10.1016/j.jmaa.2011.05.053
[7] Chabrowski, J., On multiple solutions for the nonhomogeneous p-laplacian with a critical sobolev exponent, Differential and Integral Equations, 8, 4, 705-716 (1995) · Zbl 0814.35033
[8] Han, P., Quasilinear elliptic problems with critical exponents and Hardy terms, Nonlinear Analysis: Theory, Methods & Applications, 61, 5, 735-758 (2005) · Zbl 1210.35021 · doi:10.1016/j.na.2005.01.030
[9] Tarantello, G., On nonhomogeneous elliptic equations involving critical Sobolev exponent, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 9, 281-304 (2016), Elsevier · Zbl 0785.35046
[10] Willem, M., Minimax theorems, progress in nonlinear differential equations and applications, 24 (1996) · Zbl 0856.49001
[11] Struwe, M.; Struwe, M., Variational methods (1990), Springer · Zbl 0746.49010
[12] Echarghaoui, R.; Khiddi, M.; Sbai, S. M., Multiple positive solutions for a Choquard equation involving both concave-convex and Hardy-Littlewood-Sobolev critical exponent, Differential Equations & Applications, 9, 4, 505-520 (2017) · Zbl 1401.35116 · doi:10.7153/dea-2017-09-34
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.