Kyrchei, Ivan I. Determinantal representations of general and (skew-)Hermitian solutions to the generalized Sylvester-type quaternion matrix equation. (English) Zbl 1474.15041 Abstr. Appl. Anal. 2019, Article ID 5926832, 14 p. (2019). Summary: In this paper, we derive explicit determinantal representation formulas of general, Hermitian, and skew-Hermitian solutions to the generalized Sylvester matrix equation involving \(\ast\)-Hermicity \(\mathbf{AXA}^\ast + \mathbf{BYB}^\ast = \mathbf{C}\) over the quaternion skew field within the framework of the theory of noncommutative column-row determinants. Cited in 1 ReviewCited in 20 Documents MSC: 15A24 Matrix equations and identities 15A15 Determinants, permanents, traces, other special matrix functions 15B57 Hermitian, skew-Hermitian, and related matrices 15B33 Matrices over special rings (quaternions, finite fields, etc.) × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Huang, L., The matrix equation \(A X B - G X D = E\) over the quaternion field, Linear Algebra and Its Applications, 234, 197-208 (1996) · Zbl 0840.15017 · doi:10.1016/0024-3795(94)00103-0 [2] Baksalary, J. K.; Kala, R., The matrix equation \(A X B - C Y D = E\), Linear Algebra and its Applications, 30, 141-147 (1980) · Zbl 0437.15005 · doi:10.1016/0024-3795(80)90189-5 [3] Wang, Q., A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, Linear Algebra and its Applications, 384, 43-54 (2004) · Zbl 1058.15015 · doi:10.1016/j.laa.2003.12.039 [4] Wang, Q.-W.; van der Woude, J. W.; Chang, H.-X., A system of real quaternion matrix equations with applications, Linear Algebra and its Applications, 431, 1, 2291-2303 (2009) · Zbl 1180.15019 · doi:10.1016/j.laa.2009.02.010 [5] Tian, Y., Ranks and independence of solutions of the matrix equation \(A X B + C Y D = M\), Acta Mathematica Universitatis Comenianae, 1, 75-84 (2006) · Zbl 1164.15321 [6] Wang, Q. W.; Zhang, H. S.; Yu, S. W., On solutions to the quaternion matrix equation \(A X B + C Y D = E\), Electronic Journal of Linear Algebra, 17, 343-358 (2008) · Zbl 1154.15019 [7] Liao, A.-P.; Bai, Z.-Z.; Lei, Y., Best approximate solution of matrix equation \(A X B + C Y D = E\), SIAM Journal on Matrix Analysis and Applications, 27, 3, 675-688 (2005) · Zbl 1096.15004 · doi:10.1137/040615791 [8] Lin, Y.; Wang, Q.-W., Iterative Solution to a System of Matrix Equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1297.65046 · doi:10.1155/2013/124979 [9] Yin, F.; Huang, G.-X., An iterative algorithm for the least squares generalized reflexive solutions of the matrix equations \(A X B = E, C X D = F\), Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.65085 [10] He, H.-F.; Cai, G.-B.; Han, X.-J., Optimal Pole Assignment of Linear Systems by the Sylvester Matrix Equations, Abstract and Applied Analysis, 2014 (2014) · Zbl 1406.93134 · doi:10.1155/2014/301375 [11] He, Z.-H.; Wang, Q.-W.; Zhang, Y., A system of quaternary coupled Sylvester-type real quaternion matrix equations, Automatica, 87, 25-31 (2018) · Zbl 1379.93057 · doi:10.1016/j.automatica.2017.09.008 [12] He, Z. H.; Wang, Q. W., A system of periodic discrete-time coupled Sylvester quaternion matrix equations, Algebra Colloquium, 24, 1, 169-180 (2017) · Zbl 1361.15015 · doi:10.1142/S1005386717000104 [13] Wang, Q.-W.; Rehman, A.; He, Z.-H.; Zhang, Y., Constraint generalized Sylvester matrix equations, Automatica, 69, 60-64 (2016) · Zbl 1338.93174 · doi:10.1016/j.automatica.2016.02.024 [14] Rehman, A.; Wang, Q.-W.; Ali, I.; Akram, M.; Ahmad, M. O., A constraint system of generalized Sylvester quaternion matrix equations, Advances in Applied Clifford Algebras (AACA), 27, 4, 3183-3196 (2017) · Zbl 1386.15035 · doi:10.1007/s00006-017-0803-1 [15] Futorny, V.; Klymchuk, T.; Sergeichuk, V. V., Roth’s solvability criteria for the matrix equations \(A X - \hat{X} B = C\) and \(X - A \hat{X} B = C\) over the skew field of quaternions with an involutive automorphism \(q \to \hat{q} \), Linear Algebra and Its Applications, 510, 246-258 (2016) · Zbl 1352.15018 · doi:10.1016/j.laa.2016.08.022 [16] Şimşek, S.; Sarduvan, M.; Özdemir, H., Centrohermitian and skew-centrohermitian solutions to the minimum residual and matrix nearness problems of the quaternion matrix equation \((A X B, D X E) = (C, F)\), Advances in Applied Clifford Algebras (AACA), 27, 3, 2201-2214 (2017) · Zbl 1451.65041 · doi:10.1007/s00006-016-0688-4 [17] Song, C.; Chen, G., On solutions of matrix equation \(X F - A X = C\) and \(X F - A \widetilde{X} = C\), Applied Mathematics and Computation, 37, 57-68 (2011) · Zbl 1291.15009 · doi:10.1007/s12190-010-0420-9 [18] Song, C. Q.; Chen, G. L.; Liu, Q. B., Explicit solutions to the quaternion matrix equations \(####\), International Journal of Computer Mathematics, 89, 7, 890-900 (2012) · Zbl 1255.15004 · doi:10.1080/00207160.2012.666346 [19] Yuan, S.; Liao, A., Least squares solution of the quaternion matrix equation \(X - A \overset{-}{X} B = C\) with the least norm, Linear and Multilinear Algebra, 59, 985-998 (2011) · Zbl 1228.65072 · doi:10.1080/03081087.2010.509928 [20] Yuan, S.-F.; Wang, Q.-W.; Yu, Y.-B.; Tian, Y., On Hermitian solutions of the split quaternion matrix equation \(A X B + C X D = E\), Advances in Applied Clifford Algebras (AACA), 27, 4, 3235-3252 (2017) · Zbl 1386.15036 · doi:10.1007/s00006-017-0806-y [21] Zhang, X., A system of generalized Sylvester quaternion matrix equations and its applications, Applied Mathematics and Computation, 273, 74-81 (2016) · Zbl 1410.15037 · doi:10.1016/j.amc.2015.09.074 [22] Rehman, A.; Wang, Q.-W.; He, Z.-H., Solution to a system of real quaternion matrix equations encompassing \(\eta \)-Hermicity, Applied Mathematics and Computation, 265, 945-957 (2015) · Zbl 1410.15034 · doi:10.1016/j.amc.2015.05.104 [23] Chang, X. W.; Wang, J. S., The symmetric solution of the matrix equations \(####\), Linear Algebra and its Applications, 179, 171-189 (1993) · Zbl 0765.15002 · doi:10.1016/0024-3795(93)90328-L [24] Xu, G. P.; Wei, M. S.; Zheng, D. S., On solutions of matrix equation \(A X B + C Y D = F\), Linear Algebra and its Applications, 279, 93-109 (1998) · Zbl 0933.15024 · doi:10.1016/S0024-3795(97)10099-4 [25] Zhang, X., The general Hermitian nonnegative-definite and positive-definite solutions to the matrix equation \(G X G^\ast + H Y H^\ast = C\), Journal of Applied Mathematics & Computing, 14, 1-2, 51-67 (2004) · Zbl 1042.15010 · doi:10.1007/BF02936098 [26] Yuan, S.; Liao, A.; Yao, G., The matrix nearness problem associated with the quaternion matrix equation \(A X A^H + B Y B^H = C\), Applied Mathematics and Computation, 37, 1-2, 133-144 (2011) · Zbl 1291.65089 · doi:10.1007/s12190-010-0425-4 [27] Wang, Q. W.; Zhang, F., The reflexive re-nonnegative definite solution to a quaternion matrix equation, Electronic Journal of Linear Algebra, 17, 88-101 (2008) · Zbl 1147.15012 [28] Wang, Q. W.; Jiang, J., Extreme ranks of (skew-)Hermitian solutions to a quaternion matrix equation, Electronic Journal of Linear Algebra, 20, 552-573 (2010) · Zbl 1207.15016 · doi:10.13001/1081-3810.1393 [29] Bapat, R. B.; Rao, K. P. S.; Prasad, K. M., Generalized inverses over integral domains, Linear Algebra and its Applications, 140, 181-196 (1990) · Zbl 0712.15004 · doi:10.1016/0024-3795(90)90229-6 [30] Stanimirovic, P., General determinantal representation of pseudoinverses of matrices, Matematicki Vesnik, 48, 1-9 (1996) · Zbl 0948.15005 [31] Kyrchei, I. I.; Kyrchei, I. I., Cramer’s rule for generalized inverse solutions, Advances in Linear Algebra Research, 79-132 (2015), New York, NY, USA: Nova Science Publishers, New York, NY, USA [32] Kyrchei, I. I., Cramer’s rule for quaternion systems of linear equations, Fundamentalnaya i Prikladnaya Matematika, 13, 4, 67-94 (2007) · Zbl 1157.15308 · doi:10.1007/s10958-008-9245-6 [33] Kyrchei, I.; Baswell, A. R., The theory of the column and row determinants in a quaternion linear algebra, Advances in Mathematics Research, 15, 301-359 (2012), New York, NY, USA: Nova Science Publishers, New York, NY, USA [34] Kyrchei, I. I., Determinantal representations of the Moore-Penrose inverse over the quaternion skew field and corresponding Cramer’s rules, Linear and Multilinear Algebra, 59, 4, 413-431 (2011) · Zbl 1220.15007 · doi:10.1080/03081081003586860 [35] Kyrchei, I., Determinantal representations of the Drazin inverse over the quaternion skew field with applications to some matrix equations, Applied Mathematics and Computation, 238, 193-207 (2014) · Zbl 1334.15012 · doi:10.1016/j.amc.2014.03.125 [36] Kyrchei, I., Determinantal representations of the W-weighted Drazin inverse over the quaternion skew field, Applied Mathematics and Computation, 264, 453-465 (2015) · Zbl 1410.15009 · doi:10.1016/j.amc.2015.04.125 [37] Kyrchei, I., Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore-Penrose inverse, Applied Mathematics and Computation, 309, 1-16 (2017) · Zbl 1411.15025 · doi:10.1016/j.amc.2017.03.048 [38] Kyrchei, I., Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations, Linear Algebra and its Applications, 438, 1, 136-152 (2013) · Zbl 1255.15022 · doi:10.1016/j.laa.2012.07.049 [39] Kyrchei, I. I.; Baswell, A. R., Determinantal representations of the quaternion weighted moore-penrose inverse and its applications, Advances in Mathematics Research, 23, 35-96 (2017), New York, NY, USA: Nova Science Publishers, New York, NY, USA [40] Kyrchei, I., Explicit determinantal representation formulas of W-weighted Drazin inverse solutions of some matrix equations over the quaternion skew field, Mathematical Problems in Engineering, 2016 (2016) · Zbl 1400.15009 [41] Kyrchei, I.; Griffin, S., Determinantal representations of the Drazin and W-weighted Drazin inverses over the quaternion skew field with applications, Quaternions: Theory and Applications, 201-275 (2017), New York, NY, USA: Nova Science Publishers, New York, NY, USA [42] Kyrchei, I., Explicit determinantal representation formulas for the solution of the two-sided restricted quaternionic matrix equation, Applied Mathematics and Computation, 58, 1-2, 335-365 (2018) · Zbl 1396.15014 · doi:10.1007/s12190-017-1148-6 [43] Kyrchei, I., Determinantal representations of solutions to systems of quaternion matrix equations, Advances in Applied Clifford Algebras (AACA), 28, 23 (2018) · Zbl 1391.15057 · doi:10.1007/s00006-018-0843-1 [44] Kyrchei, I. I.; Yasser, H. A., Cramer’s rules for the system of two-sided matrix equations and of its special cases, Matrix Theory - Applications and Theorems, 3-20 (2018), IntechOpen · doi:10.5772/intechopen.71169 [45] Kyrchei, I. I., Cramer’s rules for Sylvester quaternion matrix equation and its special cases, Advances in Applied Clifford Algebras (AACA), 28, 90 (2018) · Zbl 1404.15013 · doi:10.1007/s00006-018-0909-0 [46] Song, G.-J., Determinantal representation of the generalized inverses over the quaternion skew field with applications, Applied Mathematics and Computation, 219, 2, 656-667 (2012) · Zbl 1302.15007 · doi:10.1016/j.amc.2012.06.056 [47] Song, G.-J., Bott-Duffin inverse over the quaternion skew field with applications, Applied Mathematics and Computation, 41, 1-2, 377-392 (2013) · Zbl 1298.15011 · doi:10.1007/s12190-012-0614-4 [48] Song, G.-J.; Wang, Q.-W.; Chang, H.-X., Cramer rule for the unique solution of restricted matrix equations over the quaternion skew field, Computers & Mathematics with Applications, 61, 6, 1576-1589 (2011) · Zbl 1217.15020 · doi:10.1016/j.camwa.2011.01.026 [49] Song, C.; Wang, X.; Zhang, X., On solutions of the generalized Stein quaternion matrix equation, Applied Mathematics and Computation, 43, 1-2, 115-131 (2013) · Zbl 1298.15023 · doi:10.1007/s12190-013-0655-3 [50] Song, G.-J.; Wang, Q.-W.; Yu, S.-W., Cramer’s rule for a system of quaternion matrix equations with applications, Applied Mathematics and Computation, 336, 490-499 (2018) · Zbl 1427.15019 · doi:10.1016/j.amc.2018.04.056 [51] Aslaksen, H., Quaternionic determinants, The Mathematical Intelligencer, 18, 3, 57-65 (1996) · Zbl 0881.15007 · doi:10.1007/BF03024312 [52] Chen, L. X., Definition of determinant and Cramer solutions over the quaternion field, Acta Mathematica Sinica, 7, 2, 171-180 (1991) · Zbl 0742.15002 · doi:10.1007/BF02633946 [53] Cohen, N.; De Leo, S., The quaternionic determinant, Electronic Journal of Linear Algebra, 7, 100-111 (2000) · Zbl 0977.15004 · doi:10.13001/1081-3810.1050 [54] Dieudonne, J., Les determinantes sur un corps non-commutatif, Bulletin de la Société Mathématique de France, 71, 27-45 (1943) · Zbl 0028.33904 [55] Dyson, F. J., Quaternion determinants, Helvetica Physica Acta, 45, 289-302 (1972) [56] Gelfand, I.; Gelfand, S.; Retakh, V.; Wilson, R. L., Quasideterminants, Advances in Mathematics, 193, 1, 56-141 (2005) · Zbl 1079.15007 · doi:10.1016/j.aim.2004.03.018 [57] Maciejewski, A. A.; Klein, C. A., Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments, International Journal of Robotics Research, 4, 3, 109-117 (1985) · doi:10.1177/027836498500400308 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.