×

zbMATH — the first resource for mathematics

A framework for optimal actuator/sensor selection in a control system. (English) Zbl 1414.93090
Summary: When dealing with large-scale systems, manual selection of a subset of components (sensors/actuators), or equivalently identification of a favourable structure for the controller, that guarantees a certain closed-loop performance, is not very feasible. This paper is dedicated to the problem of concurrent optimal selection of actuators/sensors which can equivalently be considered as the structure identification for the controller. In the context of a multi-channel \(\mathcal{H}_2\) dynamic output feedback controller synthesis, we formulate and analyse a framework in which we incorporate two extra terms for penalising the number of actuators and sensors into the variational formulations of controller synthesis problems in order to induce a favourable controller structure. We then develop an explicit scheme as well as an iterative process for the purpose of dealing with the multi-objective problem of controller structure and control law co-design. It is also stressed that the immediate application of the proposed approach lies within the fault accommodation stage of a fault tolerant control scheme. By two numerical examples, we demonstrate the remarkable performance of the proposed approach.

MSC:
93B52 Feedback control
93B50 Synthesis problems
93C15 Control/observation systems governed by ordinary differential equations
93B55 Pole and zero placement problems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alwi, H.; Edwards, C.; Edwards, C.; Lombaers, T.; Smaili, H., Fault tolerant control using sliding modes with on-line control allocation, 247-272, (2010), Berlin Heidelberg: Springer, Berlin Heidelberg
[2] Apkarian, P.; Tuan, H. D.; Bernussou, J., Continuous-time analysis, eigenstructure assignment, and H_2 synthesis with enhanced linear matrix inequalities (LMI) characterizations, Automatic Control, IEEE Transactions on, 46, 1941-1946, (2001) · Zbl 1003.93016
[3] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), Philadelphia, PA: Society for Industrial and Applied Mathematics, Philadelphia, PA · Zbl 0816.93004
[4] Candes, E. J.; Wakin, M. B.; Boyd, S. P., Enhancing sparsity by reweighted ℓ_1 minimization, Journal of Fourier analysis and applications, 14, 877-905, (2008) · Zbl 1176.94014
[5] Casavola, A.; Garone, E., Fault-tolerant adaptive control allocation schemes for overactuated systems, International Journal of Robust and Nonlinear Control, 20, 1958-1980, (2010) · Zbl 1202.93067
[6] Chilali, M.; Gahinet, P., H_∞ design with pole placement constraints: An LMI approach, Automatic Control, IEEE Transactions on, 41, 358-367, (1996) · Zbl 0857.93048
[7] Chilali, M.; Gahinet, P.; Apkarian, P., Robust pole placement in LMI regions, Automatic Control, IEEE Transactions on, 44, 2257-2270, (1999) · Zbl 1136.93352
[8] Cristofaro, A.; Johansen, T. A., Fault tolerant control allocation using unknown input observers, Automatica, 50, 1891-1897, (2014) · Zbl 1296.93045
[9] de Oliveira, M.; Bernussou, J.; Geromel, J. C., A new discrete-time robust stability condition, Systems & control letters, 37, 261-265, (1999) · Zbl 0948.93058
[10] De Oliveira, M. C.; Gerome, J. C.; Bernussou, J., An LMI optimization approach to multiobjective controller design for discrete-time systems, Decision and control, 1999. proceedings of the 38th ieee conference on, 3611-3616, (1999), Phoenix, USA: IEEE, Phoenix, USA
[11] Dhingra, N. K.; Jovanović, M. R.; Luo, Z.-Q., An ADMM algorithm for optimal sensor and actuator selection, Decision and Control, 2014, proceedings of the 53rd IEEE conference on, 4039-4044, (2014), Los Angeles: IEEE, Los Angeles
[12] Edwards, C.; Tan, C. P., Sensor fault tolerant control using sliding mode observers, Control Engineering Practice, 14, 897-908, (2006)
[13] Fahroo, F.; Demetriou, M. A., Optimal actuator/sensor location for active noise regulator and tracking control problems, Journal of Computational and Applied Mathematics, 114, 137-158, (2000) · Zbl 0966.76083
[14] Fardad, M.; Jovanovic, M. R., On the design of optimal structured and sparse feedback gains via sequential convex programming, American control conference (ACC), 2014, proceedings on, 2426-2431, (2014), Portland: IEEE, Portland · Zbl 1369.93215
[15] Gahinet, P.; Apkarian, P., An LMI-based parametrization of all \(##?##\) controllers with applications, Proceedings of the 32nd ieee conference on decision and control, 656-661, (1993), San Antonio, USA: IEEE, San Antonio, USA
[16] Güney, M.; Eşkinat, E., Optimal actuator and sensor placement in flexible structures using closed-loop criteria, Journal of Sound and Vibration, 312, 210-233, (2008)
[17] Härkegård, O.; Glad, S. T., Resolving actuator redundancy–optimal control vs. control allocation, Automatica, 41, 137-144, (2005) · Zbl 1155.93353
[18] Johansen, T. A.; Fossen, T. I., Control allocation–a survey, Automatica, 49, 1087-1103, (2013) · Zbl 1319.93031
[19] Joshi, S.; Boyd, S., Sensor selection via convex optimization, Signal Processing, IEEE Transactions on, 57, 451-462, (2009) · Zbl 1391.90679
[20] Kekatos, V.; Giannakis, G. B.; Wollenberg, B., Optimal placement of phasor measurement units via convex relaxation, IEEE Transactions on Power Systems, 27, 1521-1530, (2012)
[21] Leibfritz, F.; Lipinski, W., Description of the benchmark examples in COMPleib 1.0., (2003)
[22] Leite, V. J. S.; Peres, P. L. D., An improved LMI condition for robust D-stability of uncertain polytopic systems, IEEE Transactions on Automatic Control, 48, 500-504, (2003) · Zbl 1364.93598
[23] Lin, F.; Fardad, M.; Jovanovic, M., Augmented Lagrangian approach to design of structured optimal state feedback gains, IEEE Transactions on Automatic Control, 56, 2923-2929, (2011) · Zbl 1368.93221
[24] Löfberg, J., YALMIP: A toolbox for modeling and optimization in MATLAB, Proceedings of IEEE International Symposium on Computer Aided Control System Design, 2004, 284-289, (2004), Taipei, Taiwan: IEEE, Taipei, Taiwan
[25] Montagner, V. F.; Peres, P. L. D., \(##?##\) parameter-dependent state feedback control of linear time-varying systems in polytopic domains, Proceedings of the 44th IEEE Conference on Decision and the European Control Conference 2005,, 5006-5011, (2005), Seville, Spain: IEEE, Seville, Spain
[26] Moreno, C. P.; Pfifer, H.; Balas, G. J., Actuator and sensor selection for robust control of aeroservoelastic systems, Proceedings of 2015 American Control Conference (ACC), 1899-1904, (2015), Chicago, USA: IEEE, Chicago, USA
[27] Nestorović, T.; Trajkov, M., Optimal actuator and sensor placement based on balanced reduced models, Mechanical Systems and Signal Processing, 36, 271-289, (2013)
[28] Peaucelle, D.; Arzelier, D.; Bachelier, O.; Bernussou, J., A new robust D-stability condition for real convex polytopic uncertainty, Systems & Control Letters, 40, 21-30, (2000) · Zbl 0977.93067
[29] Polyak, B.; Khlebnikov, M.; Shcherbakov, P., An LMI approach to structured sparse feedback design in linear control systems, Proceedings of 2013 European Control Conference (ECC),, 833-838, (2013), Zurich, Switzerland: IEEE, Zurich, Switzerland
[30] Rogers, J., A parallel approach to optimum actuator selection with a genetic algorithm, AIAA guidance, navigation, and control conference and exhibit, 1-10, (2000), Denver, USA
[31] Roy, V.; Chepuri, S. P.; Leus, G., Sparsity-enforcing sensor selection for DOA estimation, Computational advances in multi-sensor adaptive processing (CAMSAP), 2013 IEEE 5th international workshop on, 340-343, (2013), St. Martin, France: IEEE, St. Martin, France
[32] Savkin, A. V.; Evans, R. J., Hybrid dynamical systems: Controller and sensor switching problems, (2002), Cambridge: Springer Science & Business Media, Birkhauser Boston 2002, Cambridge · Zbl 1015.93002
[33] Savkin, A. V.; Evans, R. J.; Skafidas, E., The problem of optimal robust sensor scheduling, Systems & Control Letters, 43, 149-157, (2001) · Zbl 0974.93064
[34] Scherer, C.; Gahinet, P.; Chilali, M., Multiobjective output-feedback control via LMI optimization, IEEE Transactions on Automatic Control, 42, 896-911, (1997) · Zbl 0883.93024
[35] Schuler, S.; Münz, U.; Allgöwer, F., Decentralized state feedback control for interconnected systems with application to power systems, Journal of Process Control, 24, 379-388, (2014)
[36] Staroswiecki, M.; Amani, A. M., Fault-tolerant control of distributed systems by information pattern reconfiguration, International Journal of Adaptive Control and Signal Processing, 29, 671-684, (2014) · Zbl 1330.93076
[37] Tan, C. P.; Edwards, C., Sliding mode observers for robust detection and reconstruction of actuator and sensor faults, International Journal of Robust and Nonlinear Control, 13, 443-463, (2003) · Zbl 1036.93025
[38] Toh, K. C.; Todd, M. J.; Tütüncü, R. H.; Tutuncu, R. H., SDPT3 - a MATLAB software package for semidefinite programming, Optimization Methods and Software, 11, 545-581, (1998) · Zbl 0997.90060
[39] Van De Wal, M.; De Jager, B., A review of methods for input/output selection, Automatica, 37, 487-510, (2001) · Zbl 0995.93002
[40] Westermayer, C.; Schirrer, A.; Hemedi, M.; Kozek, M., An advanced criterion for optimal actuator and sensor placement on complex flexible structures, IFAC Proceedings Volumes, 42, 114-119, (2009)
[41] Zhang, Y. M.; Jiang, J., Active fault-tolerant control system against partial actuator failures, IEEE proceedings-Control Theory and applications, 149, 95-104, (2002)
[42] Zoltowski, D. M.; Dhingra, N.; Lin, F.; Jovanovic, M. R., Sparsity-promoting optimal control of spatially-invariant systems, Proceedings of American control conference (ACC), 2014, 1255-1260, (2014), Portland, USA: IEEE, Portland, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.