zbMATH — the first resource for mathematics

Molecular modeling and molecular dynamics simulations of GPI 14 in Leishmania major: insight into the catalytic site for active site directed drug design. (English) Zbl 1412.92179
Summary: Leishmania major causes cutaneous form of leishmaniasis affecting 21 million people in developing countries. Overuse of the chemotherapeutics against leishmaniasis has resulted in the development of drug resistance in the parasite. To surmount this emerging threat we have attempted to target the surface molecules. Glycosylphosphatidylinositol is one such molecule that is present abundantly and thus our work revolves around the enzyme mannosyltransferase (GPI 14), an enzyme essential to add mannose on the glycosylphosphatidyl. It has been targeted for drug discovery on account of growing resistance to miltefosine in L. major. This paper serves as the first attempt to detect GPI 14 gene in L. major supported with modeling and molecular dynamic analysis of complete three dimensional structure of GPI 14. The functional analysis revealed multiple transmembrane regions in GPI 14 and a close phylogenetic relation with Trypanosoma species and Schistosoma mansoni with highest bootstrap values. The protein model obtained was subjected to minimization for 14 ns simulation. Eight derivatives of \(N\)-4-(-5(trifluoromethyl)-1-methyl-1\(H\)-benzo[\(d\)]imidazole-2-yl)phenyl) were docked onto GPI 14. The contact frequency of GPI 14 with the docked compounds suggested the inhibition of mannosylation proposing the druggability for leishmaniasis therapy.
92C60 Medical epidemiology
92C40 Biochemistry, molecular biology
Full Text: DOI
[1] Accelrys Software Inc., Discovery Studio Modeling Environment, Release 3.0, San Diego: Accelrys Software Inc., 2007.
[2] Arfken, G., The method of steepest descents.7.4 in mathematical methods for physicists, 428-436, (1985), Academic Press Orlando, FL
[3] Bafica, A. M.B.; Cardoso, L. S.; Oliveira, S. C., schistosoma mansoni antigens alter the cytokine response in vitro during cutaneous leishmaniasis, 106, 856-863, (2011), Mem Inst Oswaldo Cruz Rio de Janeiro
[4] Berendsen, H. J.C.; Postma, J. P.M.; Van, G. W.F.; DiNola, A.; Haak, J. R., Molecular dynamics with coupling to an external Bath, J. Chem. Phys., 81, 3684, (1984)
[5] Berendsen, H. J.C.; Van der Spoel, D.; Van Drunen, R., GROMACS: a message-passing parallel molecular dynamics implementation, Comput. Phys. Commun., 91, 43-56, (1995)
[6] BigDye Terminator v3.1 Cycle Sequencing Kit. Protocol. Part number 4337035 Rev. A. Applied Biosystems. Foster City, CA, 2002.
[7] Chavali, K. A.; Jeffrey, W. D.; James, A. E.; Kyle, W. T.; Jason, P. A., Systems analysis of metabolism in the pathogenic trypanosomatid leishmania major, Mol. Syst. Biol., 4, 1-19, (2008)
[8] Croft, S. L; Sundar, S.; Fairlamb, A. H., Drug resistance in leishmaniasis, Clin. Microbiol. Rev., 19, 111-126, (2006)
[9] Darden, T.; York, D.; Pedersen, L., Particle mesh ewald: an N⋅log (N) method for ewald sums in large systems, J. Chem. Phys, 98, 10089-10092, (1993)
[10] DeLano, W. L., The pymol molecular graphics system delano scientific, (2002), San Carlos CA, USA
[11] Expert Committee. Control of the Leishmaniases. WHO Technical Report Series 949. Geneva, Switzerland: World Health Organization, 2010:1-186.
[12] Ferguson, M. A.J, The structure, biosynthesis and functions of glycosyl- phosphatidylinositol anchor, and the contributions of trypanosome research, J. Cell. Sci., 112, 2799-2809, (1999), (J)
[13] Gillmora, C. S.; Lukowitza, W.; Brininstoola, G., Glycosylphosphatidylinositol-anchored proteins are required for cell wall synthesis and morphogenesis in arabidopsis, Plant Cell, 17, 1128-1140, (2005)
[14] Halling, P. J., Biocatalysis in low-water media: understanding effects of reaction conditions, Curr. Opin. Chem. Biol., 4, 74-80, (2000)
[15] Hector, M.; Mora, M.; Steven, B.; Mihai, G. N., A multifunctional mannosyltransferase family in candida albicans determines cell wall mannan structure and host-fungus interaction, J. Biol. Chem., 285, 12087-12095, (2010)
[16] Hess, B.; Bekker, H.; Beredensen, H. J.C.; Faraaije, J. E.M., LINCS: a linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463-1472, (1997)
[17] Hong, Y.; Kinoshita Trypanosome, T., Glycosylphosphatidylinositol biosynthesis, Korean J. Parasitol, 47, 197-204, (2009)
[18] Huelsenbeck, J. P.; Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees, Bioinformatics, 17, 754-755, (2001)
[19] Ilgoutzl, C. S.; McConville, J. M., Function and assembly of the leishmania surface coat, Int. J. Parasitol., 31, 899-908, (2001)
[20] Kerrigan, E., GROMACS tutorial for drug—enzyme complex, (1997), University of Medicine and Dentistry of NJ USA
[21] Kopecky, K.; Giboda, M.; Aldova, E.; Dobahi, S. S.; Radkovsky, J., Studies on the occurrence of some infectious diseases in two different areas in south yemen (aden): part I, parasitology, J. Hyg. Epidemiol. Microbiol. Immunol., 36, 253-261, (1992)
[22] Laurie, A. T.; Jackson, R. M., Q-sitefinder: an energy-based method for the prediction of protein-ligand binding sites, Bioinformatics, 21, 1908-1916, (2005)
[23] Luthy, R.; Bowie, J. U; Eisenberg, D., Assessment of protein models with three-dimensional profiles, Nature, 356, 83-85, (1992)
[24] Maeda, Y.; Watanabe, R.; Harris, C. L., PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER, EMBO J., 20, 250-261, (2001)
[25] Mahdy, E. A.; Morsy, T. A.; Youssef, M. S.; Shazly, A. M.; Hammoda, N. E., Visceral leishmaniasis among hypersplenic patients in dakahlia governorate, Egypt, J. Egypt Soc. Parasitol., 23, 563-577, (1993)
[26] Mcgwire, B. S.; Satoskar, A. R., Leishmaniasis: clinical syndromes and treatment, Q. J. Med., 107, 7-14, (2014)
[27] Miyamoto, S.; Kollman, P. A., Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models, J. Comput. Chem., 13, 952-962, (1992)
[28] Naderer, T.; Vince, E. J.; McConville, M. J., Surface determinants of leishmania parasites and their role in infectivity in the Mammalian host, Curr. Mol. Med., 4, 649-665, (2004)
[29] Natalia, N.; Sukhareva, B., Biologically active substances of protozoa: glycosylated lipids of flagellates, 36-45, (2003), Kluwer Academic publisher Netherland
[30] Nurminsky, D. I.; Hart, D. L., Sequence scanning: a method for rapid sequence acquisition from large-fragment DNA clones, Proc. Nat. Acad. Sci. U.S.A., 93, 1694-1698, (1996)
[31] Olson, G. M.; Fox, D. S.; Wang, P.; Alspaugh, J. A.; Buchanan, K. L., Role of protein O-mannosyltransferase pmt4 in the morphogenesis and virulence of cryptococcus neoformans, Eukaryot. Cell, 6, 222-234, (2007)
[32] Pasquier, C.; Promponas, V. J.; Palaios, G. A.; Hamodrakas, J. S.; Hamodrakas, S. J., A novel method for predicting transmembrane segments in proteins based on a statistical analysis of the swissprot database: the PRED-TMR algorithm, Protein Eng., 12, 381-385, (1999)
[33] Proudfoot, L.; O׳Donnell, A. C.; Liew, Y. F., Glycoinositolphospholipids of leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages, Eur. J. Immunol., 25, 745-750, (1990)
[34] Proudfoot, L.; Nikolaev, V. A.; Ferguson, J. A.M.; Brimacombe, S. J; Liew, Y. F., Regulation of the expression of nitric oxide synthase and leishmanocidal activity by glycoconjugates of leishmania lipophosphoglycan in murine macrophages, Proc. Nat. Acad. Sci. U.S.A., 93, 10984-10989, (1996)
[35] Rio, D.C., Ares, M.J., Hannon, G.J., Nilsen, T.W. Purification of RNA using TRIzol (TRI reagent) Cold Spring Harb Protoc. 6 (2010) pdb.prot5439.
[36] Rogers, M. B., Chromosome and gene copy number variation allow major structural change between species and strains of leishmania, Genome Res., 21, 2129-2142, (2011)
[37] Roy, A.; Kucukura, A.; Zhang, Y., I-TASSER: a unified platform for automated protein structure and function prediction, Nat. Protoc., 5, 725-738, (2010)
[38] Subramanian, S.; Woolford, C. A; Drill, E; Lu, M; Jones, E. W., Pbn1p: an essential endoplasmic reticulum membrane protein required for protein processing in the endoplasmic reticulum of budding yeast, Proc. Nat. Acad. Sci. U.S.A., 103, 939-944, (2006)
[39] Takeda, T. Kinoshita, GPI-anchor biosynthesis, Trends Biochem. Sci, 20, 367-371, (1995)
[40] Torrelles, J. B.; DesJardin, L. E.; MacNeil, J., Inactivation of mycobacterium tuberculosis mannosyltransferase pimb reduces the cell wall lipoarabinomannan and lipomannan content and increases the rate of bacterial-induced human macrophage cell death, Glycobiology, 19, 743-755, (2009)
[41] Trott, O.; Olson, A. J., Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem., 31, 455-461, (2010)
[42] Wiederstein, M.; Sippl, M. J., Prosa-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Res., 35, W407-W410, (2007)
[43] Wiggins, C. A.R.; Munro, S., Activity of the yeast MNN1 α-1, 3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases, Proc. Nat. Acad. Sci. U.S.A., 95, 7945-7950, (1998)
[44] Wolber, G.; Langer, T., Ligandscout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters, J. Chem. Inf. Model., 45, 160-169, (2005)
[45] Wu, S.; Zhang, Y., LOMETS: a local meta-threading-server for protein structure prediction, Nucleic Acids Res., 35, 3375-3382, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.