zbMATH — the first resource for mathematics

Monolithic and partitioned coupling schemes for thermo-viscoplasticity. (English) Zbl 1423.74916
Summary: In this article we investigate a fully, thermo-mechanically coupled viscoplasticity model in view of various numerical aspects. First, we develop the entire system of differential-algebraic equations resulting from the spatially discretized principle of virtual displacements, the principle of virtual temperatures, and the evolution equations of the internal variables provided by the constitutive model. In the time-integration step this system is solved both using a fully monolithic approach based on a Backward-Euler scheme in combination with the Multilevel-Newton algorithm as well as a partitioned approach solving the fully coupled system. The latter is treated by means of a combination of a Backward-Euler method and an accelerated Gauss-Seidel/Multilevel-Newton scheme to solve the resulting system of algebraic equations within each time-integration step. Additionally, we consider a specific treatment of the interpolation between different meshes within the partitioned approach. This is shown for \(p\)-version finite elements based on hierarchical shape functions. Finally, it turns out that the specific constitutive model of small-strain thermo-viscoplasticity, which is based on the decomposition into kinematic hardening and energy storing strains, yields a problem-adapted stress algorithm. This allows to reduce the stress algorithm on Gauss-point level to the solution of one scalar equation. Numerical examples serve to elucidate the behavior and properties of the proposed methods.

74S05 Finite element methods applied to problems in solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F05 Thermal effects in solid mechanics
Full Text: DOI
[1] Lion, A., Constitutive modelling in finite thermoviscoplasticity: a physical approach based on nonlinear rheological models, Int. J. Plast., 16, 469-494, (2000) · Zbl 0996.74022
[2] Armstrong, P.; Frederick, C. O., A mathematical representation of the multiaxial bauschinger effect. tech. rep., G.E.G.B. report RD/B/N731, (1966), Berkeley Nuclear Laboratories UK
[3] Tsakmakis, C.; Willuweit, A., A comparative study of kinematic hardening rules at finite deformations, Int. J. Non-Linear Mech., 39, 539-554, (2004) · Zbl 1348.74066
[4] Quint, K. J.; Hartmann, S.; Rothe, S.; Saba, N.; Steinhoff, K., Experimental validation of high-order time-integration for non-linear heat transfer problems, Comput. Mech., 48, 81-96, (2011) · Zbl 1247.80004
[5] Schrefler, B. A., Encyclopedia of Computational Mechanics: Multifield Problems, Vol. 2, 575-603, (2004), John Wiley & Sons Chichester, (Chapter 17)
[6] Felippa, C. A.; Park, K. C., Staggered transient analysis procedures for coupled mechanical systems: formulation, Comput. Methods Appl. Mech. Engrg., 24, 1, 61-111, (1980) · Zbl 0453.73091
[7] Felippa, C. A.; Park, K. C.; Farhat, C., Partitioned analysis of coupled mechanical systems, Comput. Methods Appl. Mech. Engrg., 190, 24-25, 3247-3270, (2001) · Zbl 0985.76075
[8] Perić, D.; Owen, D. R.J., Encyclopedia of Computational Mechanics: Computational Modeling of Forming Processes, Vol. 2, 461-511, (2004), John Wiley & Sons Chichester, (Chapter 14)
[9] Adam, L.; Ponthot, J.-P., Thermomechanical modeling of metals at finite strains: first and mixed order finite elements, Int. J. Solids Struct., 42, 21-22, 5615-5655, (2005) · Zbl 1113.74418
[10] Čanađija, M.; Brnić, J., Nonlinear kinematic hardening in coupled thermoplasticity, Mater. Sci. Eng. A, 499, 1-2, 275-278, (2009)
[11] Münch, C., Die analyse thermomechanischer vorgänge mit der finite-element-methode, (1989), TU Magdeburg, (Ph.D. thesis)
[12] Xing, H.; Makinouchi, A., FE modeling of thermo-elasto-plastic finite deformation and its application in sheet warm forming, Eng. Comput., 19, 4, 392-410, (2002) · Zbl 1183.74327
[13] Simo, J. C.; Miehe, C., Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41-104, (1992) · Zbl 0764.73088
[14] Miehe, C., Zur numerischen behandlung thermomechanischer prozesse, (1988), Universität Hannover, (Ph.D. thesis)
[15] Miehe, C., (Kanonische modelle multiplikativer elasto-plastizität. Thermodynamische Formulierung und numerische Implementation, (1993), Universität Hannover), (Ph.D. thesis)
[16] Miehe, C., A theory of large-strain isotropic thermoplasticity based on metric transformation tensors, Arch. Appl. Mech., 66, 1-2, 45-64, (1995) · Zbl 0844.73027
[17] Miehe, C., Multisurface thermoplasticity for single crystals at large strains in terms of Eulerian vector updates, Int. J. Solids Struct., 33, 20-22, 3103-3130, (1996) · Zbl 0929.74019
[18] Großmann, C.; Roos, H.-G., Numerische behandlung partieller differentialgleichungen, (2005), Teubner Stuttgart
[19] Schiesser, W. E.; Griffiths, G. W., A compendium of partial differential equation models: method of lines analysis with Matlab, (2009), Cambridge University Press New York, NY · Zbl 1172.65002
[20] Ellsiepen, P.; Hartmann, S., Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations, Internat. J. Numer. Methods Engrg., 51, 679-707, (2001) · Zbl 1014.74068
[21] Szabo, B.; Babuska, I., Finite element analysis, (1991), Wiley New York
[22] Düster, A.; Bröker, H.; Rank, E., The p-version of the finite element method for three-dimensional curved thin walled structures, Internat. J. Numer. Methods Engrg., 52, 673-703, (2001) · Zbl 1058.74079
[23] Szabó, B.; Düster, A.; Rank, E., (Stein, E.; de Borst, R.; Hughes, T. J. R., The p-version of the Finite Element Method, Encyclopedia of Computational Mechanics, Vol. 1, (2004), John Wiley & Sons), 119-139, (Chapter 5)
[24] Hartmann, S., A remark on the application of the Newton-raphson method in non-linear finite element analysis, Comput. Mech., 36, 2, 100-116, (2005) · Zbl 1102.74040
[25] Farhat, C.; Park, K. C.; Dubois-Pelerin, Y., An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems, Comput. Methods Appl. Mech. Engrg., 85, 85, 349-365, (1991) · Zbl 0764.73081
[26] Armero, F.; Simo, J., A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems, Internat. J. Numer. Methods Engrg., 35, 737-766, (1992) · Zbl 0784.73085
[27] Armero, F.; Simo, J. C., A-priori stability estimates and unconditionally stable product formula algorithms for non-linear coupled thermoplasticity, Int. J. Plast., 9, 6, 149-182, (1993) · Zbl 0791.73026
[28] Erbts, P.; Düster, A., Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains, Comput. Math. Appl., 64, 8, 2408-2430, (2012) · Zbl 1268.74016
[29] Quint, K. J., Thermomechanically coupled processes for functionally graded materials: experiments, modelling, and finite element analysis using high-order DIRK-methods, (2012), Institute of Applied Mechanics, Clausthal University of Technology Clausthal-Zellerfeld, report no. 2/2012
[30] Hartmann, S.; Lührs, G.; Haupt, P., An efficient stress algorithm with applications in viscoplasticity and plasticity, Internat. J. Numer. Methods Engrg., 40, 991-1013, (1997) · Zbl 0888.73076
[31] Haupt, P., Continuum mechanics and theory of materials, (2002), Springer Berlin
[32] Glaser, S., Berechnung gekoppelter thermomechanischer prozesse, tech. rep. ISD report no. 91/3, (1991), Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen, Universität Stuttgart Stuttgart, Germany
[33] Netz, T., High-order space and time discretization scheme applied to problems of finite thermo-viscoelasticity, (2013), Institute of Applied Mechanics, Clausthal University of Technology Clausthal-Zellerfeld, report no. 3/2013
[34] Hartmann, S.; Kuhl, D.; Quint, K. J., Time-adaptive computation of thermoviscoplastic structures, (Steinhoff, K.; Maier, H. J.; Biermann, D., Functionally Graded Materials in Industrial Mass Production, (2009), Verlag Wissenschaftliche Scripten Auerbach, Germany), 269-282, (Chapter 3.1)
[35] Hartmann, S.; Rothe, S., A rigorous application of the method of vertical lines to coupled systems in finite element analysis, (Ansorge, R.; Bijl, H.; Meister, A.; Sonar, T., Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 120, (2013), Springer Berlin, Heidelberg), 161-175 · Zbl 1381.74193
[36] Hamkar, A.-W.; Hartmann, S., Theoretical and numerical aspects in weak-compressible finite strain thermo-elasticity, J. Theoret. Appl. Mech., 50, 3-22, (2012)
[37] Hartmann, S.; Rothe, S.; Frage, N., Electro-thermo-elastic simulation of graphite tools used in SPS processes, (Altenbach, H.; Forest, S.; Krivtsov, A., Generalized Continua as Models of Materials, Advanced Structured Materials, vol. 22, (2013), Springer Berlin), 143-161
[38] Erbts, P.; Hartmann, S.; Düster, A., A partitioned solution approach for electro-thermo-mechanical problems, Arch. Appl. Mech., (2014), in press http://dx.doi.org/10.1007/s00419-014-0941-z
[39] Wriggers, P., Nichtlineare finite-elemente methoden, (2001), Springer Verlag Berlin
[40] Hughes, T. J.R., The finite element method, (1987), Prentice-Hall Englewood Cliffs
[41] Hartmann, S.; Hamkar, A.-W., Rosenbrock-type methods applied to finite element computations within finite strain viscoelasticity, Comput. Methods Appl. Mech. Engrg., 199, 23-24, 1455-1470, (2010) · Zbl 1231.74412
[42] Hairer, E.; Wanner, G., Solving ordinary differential equations II, (1996), Springer Berlin · Zbl 0859.65067
[43] Rothe, S.; Hamkar, A.-W.; Quint, K. J.; Hartmann, S., Comparison of diagonal-implicit, linear-implicit and half-explicit Runge-Kutta methods in non-linear finite element analyses, Arch. Appl. Mech., 82, 8, 1057-1074, (2012) · Zbl 1293.74423
[44] Rabbat, N. B.G.; Sangiovanni-Vincentelli, A. L.; Hsieh, H. Y., A multilevel Newton algorithm with macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain, IEEE Trans. Circuits Syst., 26, 733-740, (1979) · Zbl 0421.94020
[45] Hoyer, W.; Schmidt, J. W., Newton-type decomposition methods for equations arising in network analysis, ZAMM Z. Angew. Math. Mech., 64, 397-405, (1984) · Zbl 0567.65028
[46] Simo, J. C.; Taylor, R. L., Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Engrg., 48, 101-118, (1985) · Zbl 0535.73025
[47] Kulkarni, D. V.; Tortorelli, D.; Wallin, M., A Newton-Schur alternative to the consistent tangent approach in computational plasticity, Comput. Methods Appl. Mech. Engrg., 196, 1169-1177, (2007) · Zbl 1173.74474
[48] Hartmann, S.; Duintjer Tebbens, J.; Quint, K. J.; Meister, A., Iterative solvers within sequences of large linear systems in non-linear structural mechanics, J. Appl. Math. Mech., 89, 9, 711-728, (2009) · Zbl 1375.74093
[49] Küttler, U.; Wall, W., Fixed-point fluid-structure interaction solvers with dynamic relaxation, Comput. Mech., 43, 1, 61-72, (2008) · Zbl 1236.74284
[50] Degroote, J.; Bathe, K.-J.; Vierendeels, J., Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction, Comput. Struct., 87, 793-801, (2009)
[51] Kollmannsberger, S.; Geller, S.; Düster, A.; Tölke, J.; Sorger, C.; Krafczyk, M.; Rank, E., Fixed-grid fluid-structure interaction in two dimensions based on a partitioned lattice Boltzmann and \(p\)-FEM approach, Internat. J. Numer. Methods Engrg., 79, 7, 817-845, (2009) · Zbl 1171.74340
[52] Geller, S.; Kollmannsberger, S.; Bettah, M.; Scholz, D.; Düster, A.; Krafczyk, M.; Rank, E., An explicit model for three-dimensional fluid-structure interaction using LBM and p-FEM, (Bungartz, H.; Mehl, M.; Schäfer, M., Fluid-Structure Interaction II, Modelling, Simulation and Optimization, Lecture Notes in Computational Science and Engineering, vol. 73, (2010), Springer), 285-325 · Zbl 1213.76148
[53] Brändli, S.; Düster, A., A flexible multi-physics coupling interface for partitioned solution approaches, Proc. Appl. Math. Mech., 12, 363-364, (2012)
[54] S. Brändli, E. Höft, M. Abdel-Maksoud, A. Düster, 2013. Simulation of the interaction of service ships with offshore wind turbine plants, in: Proceedings of the Conference on Maritime Energy, Hamburg, Germany, pp. 511-518.
[55] Degroote, J.; Haelterman, R.; Annerel, S.; Bruggeman, P.; Vierendeels, J., Performance of partitioned procedures in fluid-structure interaction, Comput. Struct., 88, 7-8, 446-457, (2010)
[56] Degroote, J.; Vierendeels, J., Multi-solver algorithms for the partitioned simulation of fluid-structure interaction, Comput. Methods Appl. Mech. Engrg., 200, 25-28, 2195-2210, (2011) · Zbl 1230.74243
[57] Simo, J. C.; Hughes, T. J.R., Computational inelasticity, (1998), Springer Verlag New York · Zbl 0934.74003
[58] Muja, M.; Lowe, D. G., Fast approximate nearest neighbors with automatic algorithm configuration, (International Conference on Computer Vision Theory and Application VISSAPP’09, (2009), INSTICC Press), 331-340
[59] Brancherie, D.; Villon, P.; Ibrahimbegovic, A., On a consistent field transfer in non linear inelastic analysis and ultimate load computation, Comput. Mech., 42, 213-226, (2007) · Zbl 1304.74055
[60] Kreisselmeier, G.; Steinhauser, R., Systematische auslegung von reglern durch optimierung eines vektoriellen Gütekriteriums, Regelungstechnik, 3, 76-79, (1979) · Zbl 0402.93024
[61] Engeln-Müllges, G.; Reutter, F., Numerische Mathematik in standard FORTRAN 77 programmen, (1986), BI-Wissenschaftsverlag Mannheim · Zbl 0587.65006
[62] Haupt, P.; Lion, A., Experimental identification and mathematical modelling of viscoplastic material behavior, J. Contin. Mech. Thermodyn., 7, 73-96, (1995)
[63] Perzyna, P., Fundamental problems in viscoplasticity, Adv. Appl. Mech., 9, 243-377, (1966)
[64] Chaboche, J. L.; Rousselier, G., On the plastic and viscoplastic constitutive equations-part I rules developed with internal variable concept, J. Press. Vessel Technol., 105, 153-158, (1983)
[65] Utke, J.; Naumann, U.; Fagan, M.; Tallent, N.; Strout, M.; Heimbach, P.; Hill, C.; Wunsch, C., Openad/F: A modular, open-source tool for automatic differentiation of Fortran codes, ACM Trans. Math. Software, 34, 4, 1-34, (2008) · Zbl 1291.65140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.