×

zbMATH — the first resource for mathematics

Human proteins characterization with subcellular localizations. (English) Zbl 1412.92111
Summary: Proteins are responsible for performing the vast majority of cellular functions which are critical to a cell’s survival. The knowledge of the subcellular localization of proteins can provide valuable information about their molecular functions. Therefore, one of the fundamental goals in cell biology and proteomics is to analyze the subcellular localizations and functions of these proteins. Recent large-scale human genomics and proteomics studies have made it possible to characterize human proteins at a subcellular localization level. In this study, according to the annotation in Swiss-Prot, 8842 human proteins were classified into seven subcellular localizations. Human proteins in the seven subcellular localizations were compared by using topological properties, biological properties, codon usage indices, mRNA expression levels, protein complexity and physicochemical properties. All these properties were found to be significantly different in the seven categories. In addition, based on these properties and pseudo-amino acid compositions, a machine learning classifier was built for the prediction of protein subcellular localization. The study presented here was an attempt to address the aforementioned properties for comparing human proteins of different subcellular localizations. We hope our findings presented in this study may provide important help for the prediction of protein subcellular localization and for understanding the general function of human proteins in cells.
MSC:
92C40 Biochemistry, molecular biology
92C37 Cell biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; Davis, A. P.; Dolinski, K.; Dwight, S. S.; Eppig, J. T., Gene ontology: tool for the unification of biology, Nat. Genet., 25, 25-29, (2000)
[2] Bairoch, A.; Boeckmann, B., The swiss-prot protein sequence data bank, Nucleic Acids Res., 19, 2247-2249, (1991)
[3] Bateman, A.; Coin, L.; Durbin, R.; Finn, R. D.; Hollich, V.; Griffiths-Jones, S.; Khanna, A.; Marshall, M.; Moxon, S.; Sonnhammer, E. L.L., The pfam protein families database, Nucleic Acids Res., 32, D138-D141, (2004)
[4] Bennetzen, J. L.; Hall, B., Codon selection in yeast, J. Biol. Chem., 257, 3026-3031, (1982)
[5] Bhaskaran, R.; Ponnuswamy, P., Positional flexibilities of amino acid residues in globular proteins, Int. J. Pept. Protein Res., 32, 241-255, (1988)
[6] Biou, V.; Gibrat, J.; Levin, J.; Robson, B.; Garnier, J., Secondary structure prediction: combination of three different methods, Protein Eng., 2, 185-191, (1988)
[7] Brown, K. R.; Jurisica, I., Online predicted human interaction database, Bioinformatics, 21, 2076-2082, (2005)
[8] Burge, C.; Karlin, S., Prediction of complete gene structures in human genomic DNA, J. Mol. Biol., 268, 78-94, (1997)
[9] Chang, C. C.; Lin, C. J., LIBSVM: a library for support vector machines, (2011), (Software available at:)
[10] Chen, W.; Feng, P. M.; Lin, H.; Chou, K. C., Irspot-psednc: identify recombination spots with pseudo dinucleotide composition, Nucleic Acids Res., 41, (2013), (e68-e68)
[11] Chen, W. H.; Minguez, P.; Lercher, M. J.; Bork, P., OGEE: an online gene essentiality database, Nucleic Acids Res., 40, D901-D906, (2012)
[12] Chen, Y. L.; Li, Q. Z., Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition, J. Theor. Biol., 248, 377-381, (2007)
[13] Chen, Y. L.; Li, Q. Z., Prediction of the subcellular location of apoptosis proteins, J. Theor. Biol., 245, 775-783, (2007)
[14] Chin, C. S.; Samanta, M. P., Global snapshot of a protein interaction network-percolation based approach, Bioinformatics, 19, 2413-2419, (2003)
[15] Chou, K. C., Prediction of protein cellular attributes using pseudo amino acid composition, Proteins: Struct. Funct. Genet., 43, 246-255, (2001)
[16] Chou, K. C., Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, 21, 10-19, (2005)
[17] Chou, K. C., Some remarks on protein attribute prediction and pseudo amino acid composition, J. Theor. Biol., 273, 236-247, (2011) · Zbl 1405.92212
[18] Chou, K. C., Some remarks on predicting multi-label attributes in molecular biosystems, Mol. Biosyst., 9, 1092-1100, (2013)
[19] Chou, K. C.; Elrod, D. W., Protein subcellular location prediction, Protein Eng., 12, 107-118, (1999)
[20] Chou, K. C.; Cai, Y. D., Using functional domain composition and support vector machines for prediction of protein subcellular location, J. Theor. Biol., 277, 45765-45769, (2002)
[21] Chou, K. C.; Shen, H. B., Recent progress in protein subcellular location prediction, Anal. Biochem., 370, 1-16, (2007)
[22] Chou, K. C.; Shen, H. B., Cell-ploc: a package of web servers for predicting subcellular localization of proteins in various organisms, Nat. Protoc., 3, 153-162, (2008)
[23] Chou, K. C.; Shen, H. B., Recent advances in developing web-servers for predicting protein attributes, Nat. Sci., 1, 63-92, (2009)
[24] Chou, K. C.; Shen, H. B., Plant-mploc: a top-down strategy to augment the power for predicting plant protein subcellular localization, PLoS One, 5, e11335, (2010)
[25] Chou, K. C.; Shen, H. B., A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: euk-mploc 2.0, PLoS One, 5, e9931, (2010)
[26] Chou, K. C.; Jones, D.; Heinrikson, R. L., Prediction of the tertiary structure and substrate binding site of caspase-8, FEBS Lett., 419, 49-54, (1997)
[27] Chou, K. C.; Tomasselli, A. G.; Heinrikson, R. L., Prediction of the tertiary structure of a caspase-9/inhibitor complex, FEBS Lett., 470, 249-256, (2000)
[28] Chou, K. C.; Wu, Z. C.; Xiao, X., Iloc-euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins, PLoS One, 6, e18258, (2011)
[29] Chou, K. C.; Wu, Z. C.; Xiao, X., Iloc-hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites, Mol. Biosyst., 8, 629-641, (2012)
[30] Cortes, C.; Vapnik, V., Support vector networks, Mach. Learn., 20, 273-297, (1995) · Zbl 0831.68098
[31] Drawid, A.; Jansen, R.; Gerstein, M., Genome-wide analysis relating expression level with protein subcellular localization, Trends Genet., 16, 426-430, (2000)
[32] Dreger, M., Subcellular proteomics, Mass Spectrom. Rev., 22, 27-56, (2003)
[33] Eisen, M. B.; Spellman, P. T.; Brown, P. O.; Botstein, D., Cluster analysis and display of genome-wide expression patterns, Proc. Natl. Acad. Sci. USA, 95, 14863-14868, (1998)
[34] Ermolaeva, M. D., Synonymous codon usage in bacteria, Curr. Issues Mol. Biol., 3, 91-97, (2001)
[35] Fan, G. L.; Li, Q. Z., Predict mycobacterial proteins subcellular locations by incorporating pseudo-average chemical shift into the general form of chou’s pseudo amino acid composition, J. Theor. Biol., 304, 88-95, (2012) · Zbl 1397.92186
[36] Fan, Y. N.; Xiao, X.; Min, J. L.; Chou, K. C., Inr-drug: predicting the interaction of drugs with nuclear receptors in cellular networking, Int. J. Mol. Sci., 15, 4915-4937, (2014)
[37] Freeman, L. C., Centered graphs and the structure of ego networks, Math. Soc. Sci., 3, 291-304, (1982) · Zbl 0495.90048
[38] Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W., CD-HIT: accelerated for clustering the next-generation sequencing data, Bioinformatics, 28, 3150-3152, (2012)
[39] Ghaemmaghami, S.; Huh, W. K.; Bower, K.; Howson, R. W.; Belle, A.; Dephoure, N.; O’Shea, E. K.; Weissman, J. S., Global analysis of protein expression in yeast, Nature, 425, 737-741, (2003)
[40] Goh, K. I.; Cusick, M. E.; Valle, D.; Childs, B.; Vidal, M.; Barabasi, A. L., The human disease network, Proc. Natl. Acad. Sci. USA, 104, 8685-8690, (2007)
[41] Goldberg, D. S.; Roth, F. P., Assessing experimentally derived interactions in a small world, Proc. Natl. Acad. Sci. USA, 100, 4372-4376, (2003) · Zbl 1132.92327
[42] Grantham, R., Amino acid difference formula to help explain protein evolution, Science, 185, 862-864, (1974)
[43] Guo, S.H., Deng, E.Z., Xu, L.Q., Ding, H., Lin, H., Chen, W., Chou, K.C., 2014. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics, Epub ahead of print.
[44] Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotechnol., 17, 994-999, (1999)
[45] Hamosh, A.; Scott, A. F.; Amberger, J. S.; Bocchini, C. A.; McKusick, V. A., Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders, Nucleic Acids Res., 33, D514-D517, (2005)
[46] Han, H. W.; Bae, S. H.; Jung, Y. H.; Moon, J., Genome-wide characterization of the relationship between essential and TATA-containing genes, FEBS Lett., 587, 444-451, (2013)
[47] Han, H. W.; Ohn, J. H.; Moon, J.; Kim, J. H., Yin and Yang of disease genes and death genes between reciprocally scale-free biological networks, Nucleic Acids Res., 41, 9209-9217, (2013)
[48] Hopp, T. P.; Woods, K. R., Prediction of protein antigenic determinants from amino acid sequences, Proc. Natl. Acad. Sci. USA, 78, 3824-3828, (1981)
[49] Huang, T.; Zhang, J.; Xu, Z. P.; Hu, L.-L.; Chen, L.; Shao, J. L.; Zhang, L.; Kong, X. Y.; Cai, Y. D.; Chou, K. C., Deciphering the effects of gene deletion on yeast longevity using network and machine learning approaches, Biochimie, 94, 1017-1025, (2012)
[50] Hubbard, T.; Barker, D.; Birney, E.; Cameron, G.; Chen, Y.; Clark, L.; Cox, T.; Cuff, J.; Curwen, V.; Down, T., The ensembl genome database project, Nucleic Acids Res., 30, 38-41, (2002)
[51] Hulo, N.; Bairoch, A.; Bulliard, V.; Cerutti, L.; De Castro, E.; Langendijk-Genevaux, P. S.; Pagni, M.; Sigrist, C. J., The PROSITE database, Nucleic Acids Res., 34, D227-D230, (2006)
[52] Hurst, L. D., The ka/Ks ratio: diagnosing the form of sequence evolution, Trends Genet., 18, 486-487, (2002)
[53] Hwang, Y. C.; Lin, C. C.; Chang, J. Y.; Mori, H.; Juan, H. F.; Huang, H. C., Predicting essential genes based on network and sequence analysis, Mol. Biosyst., 5, 1672-1678, (2009)
[54] Ikemura, T., Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system, J. Mol. Biol., 151, 389-409, (1981)
[55] Janin, J.; Wodak, S.; Levitt, M.; Maigret, B., Conformation of amino acid side-chains in proteins, J. Mol. Biol., 125, 357-386, (1978)
[56] Jeong, H.; Mason, S. P.; Barabási, A.; Oltvai, Z. N., Lethality and centrality in protein networks, Nature, 411, 41-42, (2001)
[57] Joyce, A. R.; Reed, J. L.; White, A.; Edwards, R.; Osterman, A.; Baba, T.; Mori, H.; Lesely, S. A.; Palsson, B.Ø.; Agarwalla, S., Experimental and computational assessment of conditionally essential genes in Escherichia coli, J. Bacteriol., 188, 8259-8271, (2006)
[58] Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M., The KEGG resource for deciphering the genome, Nucleic Acids Res., 32, D277-D280, (2004)
[59] Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.; Kanehisa, M., Aaindex: amino acid index database, progress report 2008, Nucleic Acids Res., 36, D202-D205, (2008)
[60] Kotlyar, M.; Fortney, K.; Jurisica, I., Network-based characterization of drug-regulated genes, drug targets, and toxicity, Methods, 57, 499-507, (2012)
[61] Kurland, C., Codon bias and gene expression, FEBS Lett., 285, 165-169, (1991)
[62] Laxton, R., The measure of diversity, J. Theor. Biol., 70, 51-67, (1978)
[63] Li, B. Q.; Hu, L. L.; Niu, S.; Cai, Y. D.; Chou, K. C., Predict and analyze S-nitrosylation modification sites with the mrmr and IFS approaches, J. Proteomics, 75, 1654-1665, (2012)
[64] Li, Z. C.; Lai, Y. H.; Chen, L. L.; Chen, C.; Xie, Y.; Dai, Z.; Zou, X. Y., Identifying subcellular localizations of Mammalian protein complexes based on graph theory with a random forest algorithm, Mol. Biosyst., 9, 658-667, (2013)
[65] Lin, C. Y.; Chin, C. H.; Wu, H. H.; Chen, S. H.; Ho, C. W.; Ko, M. T., Hubba: hub objects analyzer a framework of interactome hubs identification for network biology, Nucleic Acids Res., 36, W438-W443, (2008)
[66] Lin, H., The modified Mahalanobis discriminant for predicting outer membrane proteins by using chou’s pseudo amino acid composition, J. Theor. Biol., 252, 350-356, (2008) · Zbl 1398.92076
[67] Lin, H.; Li, Q. Z., Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant, Biochem. Biophys. Res. Commun., 354, 548-551, (2007)
[68] Lin, S. X.; Lapointe, J., Theoretical and experimental biology in one, J. Biomed. Sci. Eng., 6, 435-442, (2013)
[69] Liu, B.; Zhang, D.; Xu, R.; Xu, J.; Wang, X.; Chen, Q.; Dong, Q.; Chou, K. C., Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection, Bioinformatics, 30, 472-479, (2013)
[70] Luby-Phelps, K., Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area, Int. Rev. Cytol., 192, 189-221, (1999)
[71] Martin, I. V.; MacNeill, S. A., Functional analysis of subcellular localization and protein-protein interaction sequences in the essential DNA ligase I protein of fission yeast, Nucleic Acids Res., 32, 632-642, (2004)
[72] Matys, V.; Fricke, E.; Geffers, R.; Gößling, E.; Haubrock, M.; Hehl, R.; Hornischer, K.; Karas, D.; Kel, A. E.; Kel-Margoulis, O. V., TRANSFAC^®: transcriptional regulation, from patterns to profiles, Nucleic Acids Res., 31, 374-378, (2003)
[73] McBride, H. M.; Neuspiel, M.; Wasiak, S., Mitochondria: more than just a powerhouse, Curr. Biol., 16, R551-R560, (2006)
[74] Mei, S., Predicting plant protein subcellular multi-localization by chou’s pseaac formulation based multi-label homolog knowledge transfer learning, J. Theor. Biol., 310, 80-87, (2012) · Zbl 1337.92065
[75] Min, J. L.; Xiao, X.; Chou, K. C., Iezy-drug: a web server for identifying the interaction between enzymes and drugs in cellular networking, Biomed. Res. Int., 701317, (2013)
[76] Moriyama, E. N.; Powell, J. R., Gene length and codon usage bias in drosophila melanogaster, saccharomyces cerevisiae and Escherichia coli, Nucleic Acids Res., 26, 3188-3193, (1998)
[77] Nakai, K., Protein sorting signals and prediction of subcellular localization, Adv. Protein Chem., 54, 277-344, (2000)
[78] Powell, J. R.; Moriyama, E. N., Evolution of codon usage bias in drosophila, Proc. Natl. Acad. Sci. USA, 94, 7784-7790, (1997)
[79] Przulj, N.; Wigle, D. A.; Jurisica, I., Functional topology in a network of protein interactions, Bioinformatics, 20, 340-348, (2004)
[80] Qiu, W. R.; Xiao, X.; Chou, K. C., Irspot-tncpseaac: identify recombination spots with trinucleotide composition and pseudo amino acid components, Int. J. Mol. Sci., 15, 1746-1766, (2014)
[81] Ravasz, E.; Somera, A. L.; Mongru, D. A.; Oltvai, Z. N.; Barabási, A., Hierarchical organization of modularity in metabolic networks, Science, 297, 1551-1555, (2002)
[82] Rocha, E. P., Codon usage bias from trna’s point of view: redundancy, specialization, and efficient decoding for translation optimization, Genome Res., 14, 2279-2286, (2004)
[83] Rual, J. F.; Venkatesan, K.; Hao, T.; Hirozane Kishikawa, T.; Dricot, A.; Li, N.; Berriz, G. F.; Gibbons, F. D.; Dreze, M.; Ayivi Guedehoussou, N., Towards a proteome-scale map of the human protein-protein interaction network, Nature, 437, 1173-1178, (2005)
[84] Ruepp, A.; Brauner, B.; Dunger-Kaltenbach, I.; Frishman, G.; Montrone, C.; Stransky, M.; Waegele, B.; Schmidt, T.; Doudieu, O. N.; Stümpflen, V., CORUM: the comprehensive resource of Mammalian protein complexes, Nucleic Acids Res., 36, D646-D650, (2008)
[85] Sharp, P. M.; Li, W. H., The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications, Nucleic Acids Res., 15, 1281-1295, (1987)
[86] Stelzl, U.; Worm, U.; Lalowski, M.; Haenig, C.; Brembeck, F. H.; Goehler, H.; Stroedicke, M.; Zenkner, M.; Schoenherr, A.; Koeppen, S., A human protein-protein interaction network: a resource for annotating the proteome, Cell, 122, 957-968, (2005)
[87] Tsien, R. Y., The Green fluorescent protein, Annu. Rev. Biochem., 67, 509-544, (1998)
[88] Wachi, S.; Yoneda, K.; Wu, R., Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues, Bioinformatics, 21, 4205-4208, (2005)
[89] Wan, S.; Mak, M. W.; Kung, S. Y., GOASVM: a subcellular location predictor by incorporating term-frequency gene ontology into the general form of chou’s pseudo-amino acid composition, J. Theor. Biol., 323, 40-48, (2013) · Zbl 1314.92060
[90] Wang, C.; Jiang, W.; Li, W.; Lian, B.; Chen, X.; Hua, L.; Lin, H.; Li, D.; Li, X.; Liu, Z., Topological properties of the drug targets regulated by microrna in human protein-protein interaction network, J. Drug Target., 19, 354-364, (2011)
[91] Wang, X.; Wang, R.; Zhang, Y.; Zhang, H., Evolutionary survey of druggable protein targets with respect to their subcellular localizations, Genome Biol. Evol., 5, 1291-1297, (2013)
[92] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442, (1998) · Zbl 1368.05139
[93] Wright, F., The ‘effective number of codons’ used in a gene, Gene, 87, 23-29, (1990)
[94] Wu, C.; Macleod, I.; Su, A. I., Biogps and mygene.info: organizing online, gene-centric information, Nucleic Acids Res., 41, D561-D565, (2013)
[95] Wu, Z. C.; Xiao, X.; Chou, K. C., Iloc-plant: a multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites, Mol. Biosyst., 7, 3287-3297, (2011)
[96] Wu, Z. C.; Xiao, X.; Chou, K. C., Iloc-gpos: a multi-layer classifier for predicting the subcellular localization of singleplex and multiplex Gram-positive bacterial proteins, Protein Pept. Lett., 19, 4-14, (2012)
[97] Wuchty, S., Evolution and topology in the yeast protein interaction network, Genome Res., 14, 1310-1314, (2004)
[98] Wuchty, S.; Almaas, E., Peeling the yeast protein network, Proteomics, 5, 444-449, (2005)
[99] Xiao, X.; Wu, Z. C.; Chou, K. C., A multi-label classifier for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple sites, PLoS One, 6, e20592, (2011)
[100] Xiao, X.; Wu, Z. C.; Chou, K. C., Iloc-virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites, J. Theor. Biol., 284, 42-51, (2011) · Zbl 1397.92238
[101] Xiao, X.; Min, J. L.; Wang, P.; Chou, K. C., Icdi-psefpt: identify the channel-drug interaction in cellular networking with pseaac and molecular fingerprints, J. Theor. Biol., 337, 71-79, (2013)
[102] Xu, J.; Li, Y., Discovering disease-genes by topological features in human protein-protein interaction network, Bioinformatics, 22, 2800-2805, (2006)
[103] Xu, Y.; Shao, X. J.; Wu, L. Y.; Deng, N. Y.; Chou, K. C., Isno-aapair: incorporating amino acid pairwise coupling into pseaac for predicting cysteine S-nitrosylation sites in proteins, PeerJ, 1, e171, (2013)
[104] Yang, L.; Li, Q. Z., Prediction of presynaptic and postsynaptic neurotoxins by the increment of diversity, Toxicol. In Vitro, 23, 346-348, (2009)
[105] Yang, L.; Wang, J.; Wang, H.; Lv, Y.; Zuo, Y.; Jiang, W., Analysis and identification of toxin targets by topological properties in protein-protein interaction network, J. Theor. Biol., 349, 82-91, (2014)
[106] Yıldırım, M. A.; Goh, K. I.; Cusick, M. E.; Barabási, A. L.; Vidal, M., Drug-target network, Nat. Biotechnol., 25, 1119-1126, (2007)
[107] Yu, H.; Kim, P. M.; Sprecher, E.; Trifonov, V.; Gerstein, M., The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics, PLoS Comput. Biol., 3, e59, (2007)
[108] Yuan, L. F.; Ding, C.; Guo, S. H.; Ding, H.; Chen, W.; Lin, H., Prediction of the types of ion channel-targeted conotoxins based on radial basis function network, Toxicol. In Vitro, 27, 852-856, (2013)
[109] Zhang, L.; Hu, K.; Tang, Y., Predicting disease-related genes by topological similarity in human protein-protein interaction network, Cent. Eur. J. Phys., 8, 672-682, (2010)
[110] Zhou, G. P.; Doctor, K., Subcellular location prediction of apoptosis proteins, Proteins: Struct. Funct. Genet., 50, 44-48, (2003)
[111] Zhu, M.; Gao, L.; Li, X.; Liu, Z.; Xu, C.; Yan, Y.; Walker, E.; Jiang, W.; Su, B.; Chen, X., The analysis of the drug-targets based on the topological properties in the human protein-protein interaction network, J. Drug Target., 17, 524-532, (2009)
[112] Zuo, Y. C.; Li, Q. Z., Using reduced amino acid composition to predict defensin family and subfamily: integrating similarity measure and structural alphabet, Peptides, 30, 1788-1793, (2009)
[113] Zuo, Y. C.; Li, Q. Z., Using K-minimum increment of diversity to predict secretory proteins of malaria parasite based on groupings of amino acids, Amino Acids, 38, 859-867, (2010)
[114] Zuo, Y. C.; Chen, W.; Fan, G. L.; Li, Q. Z., A similarity distance of diversity measure for discriminating mesophilic and thermophilic proteins, Amino Acids, 44, 573-580, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.