×

zbMATH — the first resource for mathematics

The preliminary efficacy evaluation of the CTLA-4-ig treatment against lupus nephritis through in-silico analyses. (English) Zbl 1412.92155
Summary: The humanized cytotoxic T lymphocyte-associated antigen 4 immunoglobulin (CTLA-4-Ig) has been used to treat lupus nephritis (LN) based on CTLA-4s negative regulation of T-cell activation through competent to binding with CD80/CD86, the inherent genetic factors influencing the CTLA-4-Ig treatment efficacy are widely unknown. Here, 62 nonsynonymous single nucleotide variants (nsSNVs) of CTLA-4 gene, 184 of CD80 and 201 of CD86 were identified and validated within both EMBL-EBI and dbSNP databases. Next, the nsSNVs rs1466152724 in CTLA-4, rs1196816748, rs765515058, rs1157880125, rs1022857991, and rs142547094 in CD80 and rs1203132714 in CD86 were consistently suggested to be deleterious by SIFT, PolyPhen-2, PROVEAN and meta LR. Based on the 3D structure stability analysis, the variant rs765515058 causing G167V in CD80 was found to reduce the protein’s stability through changing the characters of constructed structure of complete CD80 apo form and stabilizing amino acid residues of CD80 holo form in a great degree. Furthermore, the interaction energy analysis results suggested that rs1022857991 causing C50F may reduce the binding energy of CTLA-4 with CD80. Along with the increasing variants, these nsSNVs’ effects on the interaction of CTLA-4 with CD80/CD86 will increase, and thus influence the CTLA-4-Ig treatment efficacy against LN.
MSC:
92C50 Medical applications (general)
92D20 Protein sequences, DNA sequences
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adzhubei, I. A.; Schmidt, S.; Peshkin, L.; Ramensky, V. E.; Gerasimova, A.; Bork, P.; Kondrashov, A. S.; Sunyaev, S. R., A method and server for predicting damaging missense mutations, Nat. Methods, 7, 248-249, (2010)
[2] Berardi, M. J.; Shih, W. M.; Harrison, S. C.; Chou, J. J., Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching, Nature, 476, 109-113, (2011)
[3] Cai, L.; Wang, Y.; Wang, J. F., Identification of proteins interacting with human SP110 during the process of viral infections, Med. Chem., 7, 121-126, (2011)
[4] Call, M. E.; Wucherpfennig, K. W.; Chou, J. J., The structural basis for intramembrane assembly of an activating immunoreceptor complex, Nat. Immunol., 11, 1023-1029, (2010)
[5] Chan, T. M., Recent progress in the treatment of proliferative lupus nephritis, Am. J. Med., 125, 642-648, (2012)
[6] Chen, W.; Ding, H.; Zhou, X.; Lin, H., iRNA(m6A)-PseDNC: identifying N6-methyladenosine sites using pseudo dinucleotide composition, Anal. Biochem., 561-562, (2018), 59-65
[7] Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H., iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences, Oncotarget, 8, 4208-4217, (2017)
[8] Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H., iRNA-3typeA: identifying 3-types of modification at RNA’s adenosine sites, Mol. Ther., 11, 468-474, (2018)
[9] Chen, W.; Tang, H.; Ye, J.; Lin, H., iRNA-PseU: identifying RNA pseudouridine sites, Mol. Ther., 5, e332, (2016)
[10] Cheng, X.; Lin, W. Z.; Xiao, X., pLoc_bal-mAnimal: predict subcellular localization of animal proteins by balancing training dataset and PseAAC, Bioinformatics, 35, 398-406, (2019)
[11] Cheng, X.; Xiao, X., pLoc-mPlant: predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC, Mol. BioSyst., 13, 1722-1727, (2017)
[12] Cheng, X.; Xiao, X., pLoc-mVirus: predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC, Gene, 628, 315-321, (2017), (Erratum: ibid., 2018a, Vol.644, 156-156)
[13] Cheng, X.; Xiao, X., pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC, Genomics, 110, 50-58, (2018)
[14] Cheng, X.; Xiao, X., pLoc-mGneg: predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC, Genomics, 110, 231-239, (2018)
[15] Cheng, X.; Xiao, X., pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information, Bioinformatics, 34, 1448-1456, (2018)
[16] Cheng, X.; Xiao, X., pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC, J. Theor. Biol., 458, 92-102, (2018) · Zbl 1406.92173
[17] Cheng, X.; Xiao, X., pLoc_bal-mPlant: predict subcellular localization of plant proteins by general PseAAC and balancing training dataset, Curr. Pharm. Des., 24, 4013-4022, (2018)
[18] Cheng, X.; Zhao, S. G.; Lin, W. Z.; Xiao, X., pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites, Bioinformatics, 33, 3524-3531, (2017)
[19] Cheng, X.; Zhao, S. G.; Xiao, X., iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals, Oncotarget, 8, 58494-58503, (2017)
[20] Cheng, X.; Zhao, S. G.; Xiao, X., iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals, Bioinformatics, 33, 341-346, (2017), (Corrigendum, ibid., 2017c, Vol.33, 2610),
[21] Choi, Y.; Sims, G. E.; Murphy, S.; Miller, J. R.; Chan, A. P., Predicting the functional effect of amino acid substitutions and indels, PloS one, 7, e46688, (2012)
[22] Chou, K. C., Review: structural bioinformatics and its impact to biomedical science, Curr. Med. Chem., 11, 2105-2134, (2004)
[23] Chou, K. C., Insights from modelling three-dimensional structures of the human potassium and sodium channels, J. Proteom. Res., 3, 856-861, (2004)
[24] Chou, K. C., Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor, Biochem. Biophys. Res.Commun., 319, 433-438, (2004)
[25] Chou, K. C., Insights from modelling the tertiary structure of BACE2, J. Proteom. Res., 3, 1069-1072, (2004)
[26] Chou, K. C., Insights from modeling the 3D structure of DNA-CBF3b complex, J. Proteom. Res., 4, 1657-1660, (2005)
[27] Chou, K. C., Modeling the tertiary structure of human cathepsin-E, Biochem. Biophys. Res. Commun., 331, 56-60, (2005)
[28] Chou, K. C., Impacts of bioinformatics to medicinal chemistry, Med. Chem., 11, 218-234, (2015)
[29] Chou, K. C., An unprecedented revolution in medicinal chemistry driven by the progress of biological science, Curr. Top. Med. Chem., 17, 2337-2358, (2017)
[30] Chou, K. C.; Cheng, X.; Xiao, X., pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset, Genomics, (2018)
[31] Chou, K. C.; Cheng, X.; Xiao, X., pLoc_bal-mEuk: predict subcellular localization of eukaryotic proteins by general PseAAC and quasi-balancing training dataset, Med. Chem., (2019)
[32] Chou, K. C.; Howe, W. J., Prediction of the tertiary structure of the beta-secretase zymogen, Biochem. Biophys. Res. Commun., 292, 702-708, (2002)
[33] Chou, K. C.; Jones, D.; Heinrikson, R. L., Prediction of the tertiary structure and substrate binding site of caspase-8, FEBS Lett., 419, 49-54, (1997)
[34] Chou, K. C.; Shen, H. B., Recent advances in developing web-servers for predicting protein attributes, Nat. Sci., 1, 63-92, (2009)
[35] Chou, K. C.; Tomasselli, A. G.; Heinrikson, R. L., Prediction of the tertiary structure of a Caspase-9/Inhibitor complex, FEBS Lett., 470, 249-256, (2000)
[36] Cunnane, G.; Chan, O. T.; Cassafer, G.; Brindis, S.; Kaufman, E.; Yen, T. S.; Daikh, D. I., Prevention of renal damage in murine lupus nephritis by CTLA-4Ig and cyclophosphamide, Arthritis Rheum., 50, 1539-1548, (2004)
[37] Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H. J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M. S.; Chen, B.; Chou, J. J., Structural basis for membrane anchoring of HIV-1 envelope spike, Science, 353, 172-175, (2016)
[38] Dong, C.; Wei, P.; Jian, X.; Gibbs, R.; Boerwinkle, E.; Wang, K.; Liu, X., Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies, Hum. Mol. Genet., 24, 2125-2137, (2015)
[39] Fang, S.; Zhang, Y.; Xu, M.; Xue, C.; He, L.; Cai, L.; Xing, X., Identification of Damaging nsSNVs in HumanERCC2 Gene, Chem. Biol. Drug Design, 88, 441-450, (2016)
[40] Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H., iRNA-PseColl: identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC, Mol. Ther., 7, 155-163, (2017)
[41] Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W., iDNA6mA-PseKNC: identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC, Genomics, 111, 96-102, (2019)
[42] Finck, B. K.; Linsley, P. S.; Wofsy, D., Treatment of murine lupus with CTLA4Ig, Science, 265, 1225-1227, (1994)
[43] Ghauri, A. W.; Khan, Y. D.; Rasool, N.; Khan, S. A., pNitro-Tyr-PseAAC: predict nitrotyrosine sites in proteins by incorporating five features into Chou’s general PseAAC, Curr. Pharm. Des., 24, 4034-4043, (2018)
[44] Han, L.; Shen, L.; Zhu, Y.; Qiu, Y., A monoclonal antibody against CD86 and its protection in a murine lupus nephritis model of chronic graft-versus-host disease, Immunopharmacol. Immunotoxicol., 39, 285-291, (2017)
[45] Hardin, J. A., The lupus autoantigens and the pathogenesis of systemic lupus erythematosus, Arthritis Rheum., 29, 457-460, (1986)
[46] Hussain, W.; Khan, S. D.; Rasool, N.; Khan, S. A., SPalmitoylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins, Anal. Biochem., (2018)
[47] Hussain, W.; Khan, Y. D.; Rasool, N.; Khan, S. A.; Chou, K. C., SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins, J. Theor. Biol., 468, 1-11, (2019) · Zbl 1411.92233
[48] Jia, J.; Li, X.; Qiu, W.; Xiao, X., iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC, J. Theor. Biol., 460, 195-203, (2019) · Zbl 1406.92189
[49] Jia, J.; Liu, Z.; Xiao, X.; Liu, B., pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach, J. Theor. Biol., 394, 223-230, (2016) · Zbl 1343.92153
[50] Laurent, L.; Le Fur, A.; Bloas, R. L.; Neel, M.; Mary, C.; Moreau, A.; Poirier, N.; Vanhove, B.; Fakhouri, F., Prevention of lupus nephritis development in NZB/NZW mice by selective blockade of CD28, Eur. J. Immunol., 47, 1368-1376, (2017)
[51] Lei, C.; Dongqing, Z.; Yeqing, S.; Oaks, M. K.; Lishan, C.; Jianzhong, J.; Jie, Q.; Fang, D.; Ningli, L.; Xinghai, H.; Daming, R., Association of the CTLA-4 gene with rheumatoid arthritis in Chinese Han population, Eur. J. Hum. Genet., 13, 823-828, (2005)
[52] Lindahl, E.; Azuara, C.; Koehl, P.; Delarue, M., NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis, Nucleic Acids Res., 34, W52-W56, (2006)
[53] Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chen, J., Identification of real microRNA precursors with a pseudo structure status composition approach, PLoS ONE, 10, Article e0121501, (2015)
[54] Liu, B.; Fang, L.; Long, R.; Lan, X., iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition, Bioinformatics, 32, 362-369, (2016)
[55] Liu, B.; Li, K.; Huang, D. S., iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach, Bioinformatics, (2018)
[56] Liu, B.; Wang, S.; Long, R., iRSpot-EL: identify recombination spots with an ensemble learning approach, Bioinformatics, 33, 35-41, (2017)
[57] Liu, B.; Weng, F.; Huang, D. S., iRO-3wPseKNC: identify DNA replication origins by three-window-based PseKNC, Bioinformatics, 34, 3086-3093, (2018)
[58] Liu, B.; Yang, F.; Huang, D. S., iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC, Bioinformatics, 34, 33-40, (2018)
[59] Magyar, C.; Gromiha, M. M.; Pujadas, G.; Tusnady, G. E.; Simon, I., SRide: a server for identifying stabilizing residues in proteins, Nucleic Acids Res., 33, W303-W305, (2005)
[60] Maroz, N.; Segal, M. S., Lupus nephritis and end-stage kidney disease, Am.J. Med.Sci., 346, 319-323, (2013)
[61] Melo, F.; Feytmans, E., Assessing protein structures with a non-local atomic interaction energy, J. Mol. Biol., 277, 1141-1152, (1998)
[62] Ng, P. C.; Henikoff, S., SIFT: predicting amino acid changes that affect protein function, Nucleic Acids Res., 31, 3812-3814, (2003)
[63] Ng, P. C.; Henikoff, S., Predicting the effects of amino acid substitutions on protein function, Ann. Rev. Genom. Hum.Genet., 7, 61-80, (2006)
[64] Ostrov, D. A.; Shi, W.; Schwartz, J. C.; Almo, S. C.; Nathenson, S. G., Structure of murine CTLA-4 and its role in modulating T cell responsiveness, Science, 290, 816-819, (2000)
[65] OuYang, B.; Xie, S.; Berardi, M. J.; Zhao, X. M.; Dev, J.; Yu, W.; Sun, B.; Chou, J. J., Unusual architecture of the p7 channel from hepatitis C virus, Nature, 498, 521-525, (2013)
[66] Oxenoid, K.; Chou, J. J., The structure of phospholamban pentamer reveals a channel-like architecture in membranes, Proc. Natl. Acad. Sci. U. S. A., 102, 10870-10875, (2005)
[67] Oxenoid, K.; Dong, Y. S.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A. L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V. K.; Chou, J. J., Architecture of the mitochondrial calcium uniporter, Nature, 533, 269-273, (2016)
[68] Pimentel-Quiroz, V. R.; Ugarte-Gil, M. F.; Alarcon, G. S., Abatacept for the treatment of systemic lupus erythematosus, Expert Opin. Investigat. Drugs, 25, 493-499, (2016)
[69] Qiu, W. R.; Jiang, S. Y.; Xu, Z. C.; Xiao, X., iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition, Oncotarget, 8, 41178-41188, (2017)
[70] Qureshi, O. S.; Zheng, Y.; Nakamura, K.; Attridge, K.; Manzotti, C.; Schmidt, E. M.; Baker, J.; Jeffery, L. E.; Kaur, S.; Briggs, Z.; Hou, T. Z.; Futter, C. E.; Anderson, G.; Walker, L. S.; Sansom, D. M., Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4, Science, 332, 600-603, (2011)
[71] Schnell, J. R.; Chou, J. J., Structure and mechanism of the M2 proton channel of influenza A virus, Nature, 451, 591-595, (2008)
[72] Sharma, A. K.; Zhou, G. P.; Kupferman, J.; Surks, H. K.; Christensen, E. N.; Chou, J. J.; Mendelsohn, M. E.; Rigby, A. C., Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase, J. Biol. Chem., 283, 32860-32869, (2008)
[73] Smith, C., Genomics: sNPs and human disease, Nature, 435, 993, (2005)
[74] Suvas, S.; Singh, V.; Sahdev, S.; Vohra, H.; Agrewala, J. N., Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma, J. Biol. Chem., 277, 7766-7775, (2002)
[75] Tanaka, A.; Sakaguchi, S., Regulatory T cells in cancer immunotherapy, Cell Res., 27, 109-118, (2017)
[76] Uchida, K.; Nitta, K., Recent advances in the treatment of lupus nephritis, Clin. Exp. Nephrol., 16, 202-213, (2012)
[77] Xiao, X.; Cheng, X.; Chen, G.; Mao, Q., pLoc_bal-mGpos: predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC, Genomics, (2018) · Zbl 1406.92173
[78] Xiao, X.; Cheng, X.; Chen, G.; Mao, Q., pLoc_bal-mVirus: predict subcellular localization of multi-label virus proteins by PseAAC and IHTS treatment to balance training dataset, Med. Chem., (2018)
[79] Xiao, X.; Cheng, X.; Su, S.; Nao, Q., pLoc-mGpos: incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins, Nat. Sci., 9, 331-349, (2017)
[80] Xiao, X.; Xu, Z. C.; Qiu, W. R.; Wang, P.; Ge, H. T., iPSW(2L)-PseKNC: a two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition, Genomics., (2018)
[81] Yang, H.; Qiu, W. R.; Liu, G.; Guo, F. B.; Chen, W.; Lin, H., iRSpot-Pse6NC: identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC, Int. J. Biol.Sci., 14, 883-891, (2018)
[82] Zhang, C. J.; Tang, H.; Li, W. C.; Lin, H.; Chen, W., iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition, Oncotarget, 7, 69783-69793, (2016)
[83] Zhang, L.; Liao, B.; Li, D.; Zhu, W., A novel representation for apoptosis protein subcellular localization prediction using support vector machine, J. Theor. Biol., 259, 361-365, (2009) · Zbl 1402.92163
[84] Zhou, G. P.; Surks, H. K.; Schnell, J. R.; Chou, J. J.; Mendelsohn, M. E.; Rigby, A. C., The three-dimensional structure of the cGMP-dependent protein kinase I-α leucine zipper domain and its interaction with the myosin binding subunit, Blood, 104, 963a, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.