×

zbMATH — the first resource for mathematics

Geostatistics for compositional data: an overview. (English) Zbl 1414.86001
Summary: This paper presents an overview of results for the geostatistical analysis of collocated multivariate data sets, whose variables form a composition, where the components represent the relative importance of the parts forming a whole. Such data sets occur most often in mining, hydrogeochemistry and soil science, but the results gathered here are relevant for any regionalised compositional data set. The paper covers the basic definitions, the analysis of the spatial codependence between components, mapping methods of cokriging and cosimulation honoring compositional constraints, the role of pre- and post-transformations such as log-ratios or multivariate normal score transforms, and block-support upscaling. The main result is that multivariate geostatistical techniques can and should be performed on log-ratio scores, in which case the system data-variograms-cokriging/cosimulation is intrinsically consistent, delivering the same results regardless of which log-ratio transformation was used to represent them. Proofs of all statements are included in an appendix.

MSC:
86-02 Research exposition (monographs, survey articles) pertaining to geophysics
86A32 Geostatistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aitchison, J., The statistical analysis of compositional data (with discussion), J R Stat Soc Ser B (Stat Methodol), 44, 139-177, (1982) · Zbl 0491.62017
[2] Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability. Chapman & Hall Ltd., London (Reprinted in 2003 with additional material by The Blackburn Press) · Zbl 0688.62004
[3] Aitchison, J.; Barceló-Vidal, C.; Martín-Fernández, JA; Pawlowsky-Glahn, V., Logratio analysis and compositional distance, Math Geol, 32, 217-275, (2000) · Zbl 1101.86309
[4] Angerer, T.; Hagemann, S., The BIF-hosted high-grade iron ore deposits in the Archean Koolyanobbing Greenstone Belt, Western Australia: structural control on synorogenic- and weathering-related magnetite-, hematite- and goethite-rich iron ore, Econ Geol, 105, 917-945, (2010)
[5] Barceló-Vidal C (2003) When a data set can be considered compositional? In: Thió-Henestrosa S, Martin-Fernández JA (eds) Proceedings of CoDaWork’03, The 1st Compositional Data Analysis Workshop. Universitat de Girona
[6] Barceló-Vidal, C.; Martín-Fernández, JA, The mathematics of compositional analysis, Austrian J Stat, 45, 57-71, (2016)
[7] Barnett, RM; Manchuk, JG; Deutsch, CV, Projection pursuit multivariate transform, Math Geosci, 46, 337-360, (2014) · Zbl 1322.86007
[8] Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R. Springer, New York · Zbl 1269.62045
[9] Chayes, F., On correlation between variables of constant sum, J Geophys Res, 65, 4185-4193, (1960)
[10] Chilès JP, Delfiner P (1999) Geostatistics. Wiley, New York
[11] Cressie N (1991) Statistics for spatial data. Wiley, New York · Zbl 0799.62002
[12] Egozcue, JJ; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barceló-Vidal, C., Isometric logratio transformations for compositional data analysis, Math Geosci, 35, 279-300, (2003) · Zbl 1302.86024
[13] Filzmoser, P.; Hron, K., Outlier detection for compositional data using robust methods, Math Geosci, 40, 233-248, (2008) · Zbl 1135.62040
[14] Geovariances (2017) Isatis geostatistical software. Avon, France
[15] Griffin, AC, Structure and Iron Ore deposition in the Archaean Koolyanobbing Greenstone belt, Western Australia, Geol Soc Austra Spec Publ, 7, 429-438, (1981)
[16] Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London
[17] Lark, RM; Bishop, TFA, Cokriging particle size fractions of the soil, Eur J Soil Sci, 58, 763-774, (2007)
[18] Leuangthong, O.; Deutsch, CV, Stepwise conditional transformation for simulation of multiple variables, Math Geol, 35, 155-173, (2003) · Zbl 1022.86007
[19] Mateu-Figueras, G.; Pawlowsky-Glahn, V.; Egozcue, JJ; Pawlowsky-Glahn, V. (ed.); Buccianti, A. (ed.), The principle of working on coordinates, 29-42, (2011), New York
[20] Mateu-Figueras, G.; Pawlowsky-Glahn, V.; Egozcue, JJ, The normal distribution in some constrained sample spaces, Stat Oper Res Trans, 37, 29-56, (2013) · Zbl 1296.60002
[21] Matheron, G., Principles of geostatistics, Econ Geol, 58, 1246-1266, (1963)
[22] Matheron G (1965) Les variables régionalisées et leur estimation-une application de la théorie des fonctions aléatoires aux sciences de la nature. Masson et Cie, Paris
[23] Matheron G (1971) The theory of regionalized variables and its applications. Technical Report C-5, École Nationale Supérieure des Mines de Paris, Centre de Geostatistique et de Morphologie Mathematique, Fontainebleau
[24] Molayemat, H.; Torab, FM; Pawlowsky-Glahn, V.; Hossein Morshedy, A.; Egozcue, JJ, The impact of the compositional nature of data on coal reserve evaluation, a case study in Parvadeh IV coal deposit, Central Iran, Int J Coal Geol, 188, 94-111, (2018)
[25] Morales Boezio MN (2010) Estudo das metodologias alternativas da geoestatística multivariada aplicadas a estimativa de teores de depósitos de ferro. Ph. D. thesis, Universidade Federal do Rio Grande do Sul
[26] Morales Boezio, MN; Costa, JF; Koppe, JC, Cokrigagem de razōes logarítmicas aditivas (alr) na estimativa de teores em depós de ferro (Cokriging of additive log-ratios (alr) for grade estimation in iron ore deposits, Rev Escol Minas, 65, 401-412, (2012)
[27] Mueller, UA; Grunsky, EC, Multivariate spatial analysis of lake sediment geochemical data; Melville Peninsula, Nunavut, Canada, Appl Geochem, 75, 247-262, (2016)
[28] Mueller, U.; Tolosana-Delgado, R.; Boogaart, KG; Dimitrakopoulos, R. (ed.), Simulation of compositional data: a nickel-laterite case study, (2014), Melbourne
[29] Myers, DE, Matrix formulation of co-kriging, Math Geol, 14, 49-257, (1982)
[30] Pawlowsky, V., On spurious spatial covariance between variables of constant sum, Sci Terre Sér Inform, 21, 107-113, (1984)
[31] Pawlowsky V (1986) Räumliche Strukturanalyse und Schätzung ortsabhängiger Kompositionen mit Anwendungsbeispielen aus der Geologie. Ph.D. thesis, Freie Universität Berlin
[32] Pawlowsky, V., Cokriging of regionalized compositions, Math Geol, 21, 513-521, (1989)
[33] Pawlowsky-Glahn V (2003) Statistical modelling on coordinates. In: Thió-Henestrosa S, Martin-Fernández JA (eds) Proceedings of CoDaWork’03, The 1st Compositional Data Analysis Workshop. Universitat de Girona
[34] Pawlowsky-Glahn, V.; Burger, H., Spatial structure analysis of regionalized compositions, Math Geol, 24, 675-691, (1992)
[35] Pawlowsky-Glahn, V.; Egozcue, JJ, Geometric approach to statistical analysis on the simplex, Stoch Environ Res Risk Assess, 15, 384-398, (2001) · Zbl 0987.62001
[36] Pawlowsky-Glahn, V.; Egozcue, JJ, BLU estimators and compositional data, Math Geol, 34, 259-274, (2002) · Zbl 1031.86007
[37] Pawlowsky-Glahn, V.; Egozcue, JJ, Spatial analysis of compositional data: a historical review, J Geochem Explor, 164, 28-32, (2016)
[38] Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015) Modeling and analysis of compositional data. Wiley, Chichester
[39] Pawlowsky-Glahn V, Olea RA (2004) Geostatistical analysis of compositional data. Studies in mathematical geology 7. Oxford University Press, Oxford
[40] Pawlowsky-Glahn, V.; Olea, RA; Davis, JC, Estimation of regionalized compositions: a comparison of three methods, Math Geol, 27, 105-127, (1995)
[41] Rossi ME, Deutsch CV (2014) Mineral resource estimation. Springer, New York
[42] Sun, XL; Wu, YJ; Wang, HL; Zhao, YG; Zhang, GL, Mapping soil particle size fractions using compositional kriging, cokriging and additive log-ratio cokriging in two case studies, Math Geosci, 46, 429-443, (2014)
[43] Tjelmeland, H.; Lund, KV, Bayesian modelling of spatial compositional data, J Appl Stat, 30, 87-100, (2003) · Zbl 1121.62497
[44] Tolosana-Delgado R (2006) Geostatistics for constrained variables: positive data, compositions and probabilities. Application to environmental hazard monitoring. Ph.D. thesis, Universitat de Girona
[45] Tolosana-Delgado, R.; Egozcue, JJ; Pawlowsky-Glahn, V.; Ortiz, JM (ed.); Emery, X. (ed.), Cokriging of compositions: log ratios and unbiasedness, 299-308, (2008), Santiago
[46] Tolosana-Delgado, R.; Mueller, U.; Boogaart, KG; Ward, C.; Costa, JF (ed.); Koppe, J. (ed.); Peroni, R. (ed.), Block cokriging of a whole composition, 267-277, (2013), Porto Alegre
[47] Tolosana-Delgado, R.; Mueller, U.; Boogaart, KG; Ward, C.; Gutzmer, J., Improving processing by adaption to conditional geostatistical simulation of block compositions, J South Afr Inst Min Metall, 115, 13-26, (2015)
[48] Tolosana-Delgado, R.; Otero, N.; Pawlowsky-Glahn, V., Some basic concepts of compositional geometry, Math Geol, 37, 673-680, (2005) · Zbl 1152.86310
[49] Tolosana-Delgado, R.; Boogaart, KG, Joint consistent mapping of high-dimensional geochemical surveys, Math Geosci, 45, 983-1004, (2013) · Zbl 1321.86035
[50] Tolosana-Delgado, R.; Boogaart, KG; Pawlowsky-Glahn, V.; Pawlowsky-Glahn, V. (ed.); Buccianti, A. (ed.), Geostatistics for compositions, 73-86, (2011), New York
[51] van den Boogaart KG, Tolosana-Delgado R, Bren M (2018) Compositions: compositional data analysis package R package version 1.40-2
[52] van den Boogaart KG, Tolosana-Delgado R (2013) Analysing compositional data with R. Springer, Heidelberg · Zbl 1276.62011
[53] Boogaart, KG; Tolosana-Delgado, R.; Mueller, U., An affine equivariant multivariate normal score transform for compositional data, Math Geosci, 49, 231-252, (2017) · Zbl 1365.86028
[54] Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, Berlin · Zbl 1015.62128
[55] Walwoort, DJ; Gruijter, JJ, Compositional kriging: a spatial interpolation method for compositional data, Math Geol, 33, 951-966, (2001) · Zbl 1010.86016
[56] Ward, C.; Mueller, U.; Abrahamsen, P. (ed.); Hauge, R. (ed.); Kolbjornsen, O. (ed.), Multivariate estimation using log ratios: a worked alternative, 333-343, (2012), Berlin
[57] Ward C, Mueller U (2013) Compositions, log ratios and bias—from grade control to resource. In: Iron Ore 2013 shifting the paradigm. AUSIMM, Melbourne, pp 313-320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.