Puglisi, Orazio On outer automorphisms of Černikov p-groups. (English) Zbl 0706.20029 Rend. Semin. Mat. Univ. Padova 83, 97-106 (1990). This paper concerns the existence of outer p-automorphisms in Chernikov p-groups. The author proves that, if G is a non-nilpotent Chernikov p- group such that the Fitting subgroup F properly contains the finite residual \(G_ 0\) and the intersection of \(G_ 0\) with the centre Z(G) of G is divisible, then G has an outer p-automorphism. Moreover, if \(F=G_ 0\) and Z(G) is divisible, then either G has an outer p- automorphism or \(H^ 1(G/G_ 0,G_ 0)=0\) and the natural image of \(G/G_ 0\) in Aut \(G_ 0\) is a Sylow p-subgroup of Aut \(G_ 0\). The last section of the paper is devoted to the construction of some examples showing that there exist groups of this type without outer p- automorphisms. In his proofs, the author uses previous results about the existence of outer p-automorphisms in nilpotent p-groups ([W. Gaschütz, J. Algebra 4, 1-2 (1966; Zbl 0142.260)], [P. Schmid, Math. Z. 147, 271-277 (1976; Zbl 0307.20016)], [F. Menegazzo and S. E. Stonehewer, J. Lond. Math. Soc., II. Ser. 31, 272-276 (1985; Zbl 0526.20023)], [R. Marconi, Rend. Semin. Mat. Univ. Padova 74, 123-127 (1985; Zbl 0588.20027)]). Reviewer: S.Franciosi MSC: 20F28 Automorphism groups of groups 20F50 Periodic groups; locally finite groups 20E07 Subgroup theorems; subgroup growth 20E36 Automorphisms of infinite groups Keywords:outer p-automorphisms; Chernikov p-groups; Fitting subgroup; finite residual; centre; Sylow p-subgroup Citations:Zbl 0315.20020; Zbl 0564.20017; Zbl 0142.260; Zbl 0307.20016; Zbl 0526.20023; Zbl 0588.20027 PDF BibTeX XML Cite \textit{O. Puglisi}, Rend. Semin. Mat. Univ. Padova 83, 97--106 (1990; Zbl 0706.20029) Full Text: Numdam EuDML OpenURL References: [1] W. Gaschütz , Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen , J. of Algebra , 4 ( 1966 ), pp. 1 - 2 . MR 193144 | Zbl 0142.26001 · Zbl 0142.26001 [2] P. Schmid , Normal p-subgroups in the group of automorphisms of a finite p-group , Math. Z. , 147 ( 1976 ), pp. 271 - 277 . Article | MR 419602 | Zbl 0315.20020 · Zbl 0315.20020 [3] F. Menegazzo - S. STONEHEWER, On the automorphism group of a nil-potent p-group , J. London Math. Soc. , ( 2 ) 31 ( 1985 ), pp. 272 - 276 . MR 809948 | Zbl 0526.20023 · Zbl 0526.20023 [4] R. Marconi , Il gruppo degli automorfismi esterni di un p-gruppo nilpotente infinito e i suoi p-sottogruppi normali , Rend. Sem. Mat. Univ. Padova , 74 ( 1985 ), pp. 123 - 127 . Numdam | Zbl 0588.20027 · Zbl 0588.20027 [5] M. Pettet , Groups whose automorphisms are almost determined by their restriction to a subgroup , Glasgow Mat. J. , 28 ( 1986 ), pp. 87 - 89 . MR 826632 | Zbl 0581.20042 · Zbl 0581.20042 [6] C. Wells , Automorphisms of group extension , Trans. Amer. Math. Soc. , 155 ( 1971 ), pp. 189 - 194 . MR 272898 | Zbl 0221.20054 · Zbl 0221.20054 [7] Vol’vacev , Sylow p-subgroup of the general linear group , Isv. Akad. Nauk Ser. Mat. , 27 ( 1963 ) ; English translation: Amer. Math. Soc. Transl. , ( 2 ) 64 ( 1967 ), pp. 216 - 240 . Zbl 0183.03401 · Zbl 0183.03401 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.