×

zbMATH — the first resource for mathematics

Some properties of positive superharmonic functions. (English) Zbl 0706.31004
Some covering theorems analogous to the Cartan lemma are proved in the paper. Using these results a reversed Hölder inequality for positive superharmonic functions on \({\mathbb{C}}^{1+\alpha}\) or Dini domains is proved. Further it is shown that the extension of Littlewood’s radial limit theorem of Rippon and Wu can be obtained directly from the mentioned covering theorems.
Reviewer: M.Dont
MSC:
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] . B. Dahlberg , On the existence of radial boundary values for functions subharmonic in a Lipschitz domain . Indiana Univ. Math. J. 27 (1978) 515-526. · Zbl 0402.31011 · doi:10.1512/iumj.1978.27.27035
[2] . B. Davis , and J. Lewis , Paths for subharmonic functions . Proc. London Math. Soc. 48 (1984) 401-427. · Zbl 0541.31001 · doi:10.1112/plms/s3-48.3.401
[3] . J. Deny , Un théorème sur les ensembles effilés . Ann. Univ. Grenoble 23 (1948) 139-142. · Zbl 0030.05602 · numdam:AUG_1947-1948__23__139_0 · eudml:84615
[4] a. M. Essén , and H.L. Jackson , A comparision between thin sets and generalized Azarin sets . Canad. Math. Bull. 18 (1975) 335-346. · Zbl 0318.31005 · doi:10.4153/CMB-1975-062-1
[5] . M. De Guzman , Différentiation of integrals in Rn . Lecture Notes in Maths. 481. Springer-Verl., Berlin 1975. · Zbl 0327.26010 · doi:10.1007/BFb0081986
[6] a. L.S. Kudina , Estimates for functions that can be represented as a difference of subharmonic functions in a ball (Russian). Teorija Funkcii, Funkcionalnij Analiz i Prilozjenija 14 (Charkov 1971).
[7] . N.S. Landkof , Foundations of modern potential theory . Springer-Verl., Berlin 1972. · Zbl 0253.31001
[8] . D.H. Luecking , Boundary behavior of Green potentials . Proc. Am. Math. Soc. 96 (1986) 481-488. · Zbl 0594.31009 · doi:10.2307/2046600
[9] . Y. Mizuta , Boundary limits of Green potentials of general order . Proc. Am. Math. Soc. 101 (1987) 131-135. · Zbl 0659.31007 · doi:10.2307/2046563
[10] . P.J. Rippon , On the boundary behaviour of Green potentials . Proc. London Math. Soc. 38 (1979) 461-480. · Zbl 0417.31008 · doi:10.1112/plms/s3-38.3.461
[11] . M. Stoll , Boundary limits of Green potentials in the unit disc . Arch. Math. 44 (1985) 451-455. · Zbl 0553.31003 · doi:10.1007/BF01229328
[12] . E. Tolsted , Limiting values of subharmonic functions . Proc. Am. Math. Soc. 1 (1950) 636-647. · Zbl 0039.32403 · doi:10.2307/2032293
[13] . K.O. Widman , Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations . Math. Scand. 21 (1967) 17-37. · Zbl 0164.13101 · doi:10.7146/math.scand.a-10841 · eudml:166001
[14] . J.M. Wu , Content and harmonic measure - an extension of Hall’s lemma . Indiana Univ. Math. J. 36 (1987) 403-420. · Zbl 0639.31004 · doi:10.1512/iumj.1987.36.36023
[15] . J.M. Wu , Boundary limits of Green’s potentials along curves . Studia Math. 60 (1977) 137-144. · Zbl 0354.31002 · eudml:218133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.