zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The role of critical exponents in blowup theorems. (English) Zbl 0706.35008
The survey presents some basic results on the critical exponents for nonlinear evolution problems. One typical example is the following nonlinear problem for the heat equation $$ (F)\quad u\sb t=\Delta u+u\sp p,\quad x\in {\bbfR}\sp N,\quad t>0,\quad u(0,x)=u\sb 0(x),\quad x\in {\bbfR}\sp N, $$ where $\Delta$ denotes the N-dimensional Laplace operator. A result due to Fujita guarantees that for the critical exponent $p\sb c(N)=1+2/N$ the following two statements are fulfilled. (A) If $1<p<p\sb c(N)$, then the only nonnegative global (in time) solution of (F) is $u=0.$ (B) If $p>p\sb c(N)$, then there exists a global positive solution of (F), if the initial data are sufficiently small. The survey is divided into four sections. The first section deals with some extensions of the problem (F). The first part 1.1 of this section is devoted to the cases of other geometries, various linear dissipative terms or other reaction terms. More precisely, if D $(\subset {\bbfR}\sp N)$ is any bounded or unbounded domain, then in the place of (F) the author considers the initial boundary value problem $$ (D)\quad u\sb t=\Delta u+u\sp p,\quad (x,t)\in D\times (0,T),\quad u(0,x)=u\sb 0(x),\quad x\in D,\quad u(t,x)=0,\quad (x,t)\in \partial D\times (0,T), $$ or the following generalization of (D) $(GD)\quad u\sb t=\sum\sp{N}\sb{i,j=1}(a\sb{ij}(t,x)u\sb{x\sb i})\sb{x\sb j}+\sum\sp{N}\sb{i=1}b\sb i(t,x)u\sb{x\sb i}+u\sp p$ (p$\le 1)$, $u(0,x)=u\sb 0(x)$, $x\in D$, $u(t,x)=0$, (x,t)$\in \partial D\times (0,T)$, where the coefficients of the linear operator of the right-hand side are uniformly bounded in $D\times (0,\infty)$. A result due to Meier asserts that a critical exponent $p\sb c(GD)\ge 1$ exists. An explicit representation of $p\sb c(GD)$ or $p\sb c(D)$ is known for special cases of D. For example, if D is the “orthant” $D\sb k=\{x\in {\bbfR}\sp N$; $x\sb 1>0,...$, $x\sb k>0\}$, then we have $p\sb c(D\sb k)=1+2/(k+N)$ according to a result due to Meier. Another case studied in the first part of section 1 is the case of a cone D with a vertex at the origin. An explicit representation of $p\sb c(D)$ is found by Levine, Bandle and Meier. Another problem close to (F) is the Dirichlet problem for the nonlinear heat equation in which $u\sp p$ is replaced by $\vert u\vert\sp{p-1}u$. In this case one is interested in real valued solutions. This part contains also a summary on the results for $u\sb t=\Delta u+\vert x\vert\sp{\sigma}u\sp p$ or $u\sb t=\Delta u+t\sp k\vert x\vert\sp{\sigma}u\sp p$ and the dependence of the critical exponent on k, $\sigma$, p. For the general case of the problem (GD), where D has bounded complement upper and lower bounds for $p\sb c(GD)$ are found according to the results of Bandle and Levine. Part 1.2 of section 1 summarizes the results on the problem $u\sb t=A(u)+u\sp p$, where A(u) is in general a nonlinear dissipative term. Various special choices of A(u) are studied. For example a typical choice of A is given by $$ A(u)=div\{\frac{\nabla\sb xu}{(1+\vert \nabla\sb xu\vert\sp 2)\sp{1/2}}\} $$ representing the mean curvature operator. Another choice of A was considered by Galaktionov, $A(u)=\sum\sp{N}\sb{i=1}\partial\sb{x\sb i}(\vert \nabla u\vert\sp{\sigma} \partial\sb{x\sb i}u).$ Part 1.3 of section 1 contains a summary of results for bounded domains D, while the part 1.4 is devoted to systems of equations. For example $u\sb t=\Delta u+v\sp p$, $v\sb t=\Delta v+u\sp p.$ In section II the author considers the nonlinear Schrödinger equation $$ (NLS)\quad iu\sb t+\Delta u+\vert u\vert\sp{p-1}u=0,\quad x\in {\bbfR}\sp N,\quad t>0,\quad u(0,x)=u\sb 0(x). $$ For this problem the critical exponent is $p\sb{nls}(N)=1+4/N.$ In section III the nonlinear wave equation $u\sb{tt}=\Delta u+\vert u\vert\sp p$, $u(0,x)=u\sb 0(x)$, $u\sb t(0,x)=u\sb 1(x)$ as well as the critical exponent for this equation are examined. The critical exponent is the larger root of the quadratic equation $(N-1)p\sp 2-(N+1)p-2=0.$ Finally, in section IV some concluding remarks are discussed.
Reviewer: V.Georgiev

35B30Dependence of solutions of PDE on initial and boundary data, parameters
35B40Asymptotic behavior of solutions of PDE
35K55Nonlinear parabolic equations
35Q55NLS-like (nonlinear Schrödinger) equations
35K65Parabolic equations of degenerate type
35-02Research monographs (partial differential equations)
35L70Nonlinear second-order hyperbolic equations
Full Text: DOI