Hančl, Jaroslav The Fourier method for the linear partial differential equations of the \(n\)-th order. (English) Zbl 0706.35036 Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 28, 123-135 (1989). This paper describes solutions of linear partial differential equations of the type \[ \sum^{n}_{k=0}a_ k(t)\partial^ ku/\partial t^ k=\sum^{n}_{k=0}b_ k(y)\partial^ ku/\partial y^ k \] using the combination of the Fourier method and Kummer transformation. The coefficients \(a_ k(t)\) and \(b_ k(y)\) must fulfil further conditions. Reviewer: J.Hančl MSC: 35G05 Linear higher-order PDEs 35A22 Transform methods (e.g., integral transforms) applied to PDEs 35C05 Solutions to PDEs in closed form Keywords:Fourier method; Kummer transformation × Cite Format Result Cite Review PDF Full Text: EuDML References: [1] Bochner S., Chandrasekharan K.C.: Fourier Transforms. Princeton, 1949 · Zbl 0065.34101 [2] Butzer P.L., Nessel R.J.: Fourier Analysis and Aproximation. Vol.1, Birkhauser, 1971 · Zbl 0217.42603 [3] Hančl J..: A Note to the Fourier Method of Solving Partial Second Order Differential Equations. Acta Univ. Palac.Olom. (1988) · Zbl 0703.35039 [4] Hörmander L.: The Analysis of Linear Partial Differential Operators, Distribution Theory and Fourier Analysis. Springer, 1983 · Zbl 0521.35001 [5] Kufner A., Kadlec D.: Fourier Series. Praha, Academia, 1969 · Zbl 0215.17901 [6] Laitoch M.: About Solutions of Functional Equations F(tf(x)) F(x) s *i. Časopis pro pěst.mat., 81 (1956), 420-425 [7] Laitoch M.: To a Problem of Ortogonal Systems with the Weight. Acta Univ.Palac.Olom. 3 (1960) 11-28) [8] Schlömilch O.: Compendium der höherer Analysis. II Band Braunschweig, 1866 · JFM 13.0202.01 [9] Sneddon I.N.: Fourier Transforms. Mc Graw-Hill, 1951 · Zbl 0038.26801 [10] Vladimirov V.S.: Equations of Mathematical Physics. Moskva, 1967) · Zbl 0223.35002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.