×

zbMATH — the first resource for mathematics

The Cauchy problem for the critical nonlinear Schrödinger equation in \(H^ s\). (English) Zbl 0706.35127
Consider the Cauchy problem for the nonlinear Schrödinger equation in \({\mathbb{R}}^ N\), \[ (NLS)\quad iu_ t+\Delta u+\lambda | u|^{\alpha}u=0,\quad u(0)=\phi. \] Here, \(\phi\) is a given initial value, \(\lambda\) is a real parameter and \(\alpha >0\) is arbitrary (up to technical conditions that intervene only for dimensions \(N\geq 7)\). It is established that if \(0\leq s<N/2\) and \(\alpha\leq 4/(N-2s)\), then problem (NLS) is locally well posed in the Sobolev space \(H^ s({\mathbb{R}}^ N)\). In the case \(\alpha =4/(N-2s)\), if \(\| (-\Delta)^{s/2}\phi \|_{L^ 2}\) is sufficiently small, then the solution is global and decays as \(t\to \infty\) at the same rate as the free solution. The method relies on estimates for \(e^{it\Delta}\) in certain Besov spaces, on estimates of \(| u|^{\alpha}u\) in the same Besov spaces, and on a fixed point argument.
Reviewer: Th.Cazenave

MSC:
35Q55 NLS equations (nonlinear Schrödinger equations)
35B40 Asymptotic behavior of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bergh, J.; Löfstöm, J., Interpolation spaces, (1976), Springer New York
[2] Cazenave, T.; Weissler, F.B., The Cauchy problem for the nonlinear Schrödinger equation in H1, Manuscripta math., 61, 477-494, (1988) · Zbl 0696.35153
[3] Cazenave, T.; Weissler, F.B., Some remarks on the nonlinear Schrödinger equation in the critical case, (), 18-29, Lecture Notes in Mathematics
[4] Fabes, E.B.; Lewis, J.E.; Riviere, N.M., Boundary value problems for the navier – strokes equations, Am. J. math., 99, 626-668, (1977) · Zbl 0386.35037
[5] Fujita, H.; Kato, T., On the navier – strokes initial value problem I, Archs. ration mech. analysis, 16, 269-315, (1964) · Zbl 0126.42301
[6] Giga, Y., Solutions for semilinear parabolic equations in L^p and regularity of weak solutions for the Navier-Stokes system, J. diff. eqns, 62, 168-212, (1986) · Zbl 0577.35058
[7] Giga, Y.; Kohn, R.V., Characterizing blowup using similarity variables, Indiana univ. math. J., 36, 1-40, (1987) · Zbl 0601.35052
[8] Giga, Y.; Kohn, R.V.; Papanicolaou, G., Removability of blowup points for similinear heat equations, Proc. EQUADIFF conf., (August 1987)
[9] Giga, Y.; Miyakawa, T., Solutions in L_r of the navier – stokes initial value problem, Archs. ration. mech. analysis, 89, 267-281, (1985) · Zbl 0587.35078
[10] Ginibre, J.; Velo, G., Sur une équation de Schrödinger non linéaire avec interaction non locate, (), 155-199, Collége de France Seminar · Zbl 0497.35024
[11] Ginibre, J.; Velo, G., The global Cauchy problem for the nonlinear Schrödinger equation revisited, Ann. inst. H. Poincaré analyse non linéaire, 2, 309-327, (1985) · Zbl 0586.35042
[12] Ginibre, J.; Velo, G., The global Cauchy problem for the nonlinear klein – gordon equation, Math. Z., 189, 487-505, (1985) · Zbl 0549.35108
[13] Haraux, A.; Weissler, F.B., Non-uniqueness for a semilinear initial value problem, Indiana univ. math. J., 31, 167-189, (1982) · Zbl 0465.35049
[14] Kato, T., Strong L^p-solutions of the navier – stokes equations in \bfrm with applications to weak solutions, Math. Z., 187, 471-480, (1984) · Zbl 0545.35073
[15] Kato, T., On nonlinear Schrödinger equations, Ann. inst. H. Poincaré physique théorique, 46, 113-129, (1987) · Zbl 0632.35038
[16] Kato, T.; Fujita, H., On the nonstationary navier – stokes system, Rc. semin. mat. univ. Padova, 32, 243-260, (1962) · Zbl 0114.05002
[17] Merle, F., Limit of the solution of the nonlinear schödinger equation at the blow-up time, J. funct. analysis, 84, 201-214, (1989) · Zbl 0681.35078
[18] Miyakawa, T., On the initial value problem for the navier – stokes equations in L^p spaces, Hiroshima math. J., 11, 9-20, (1981) · Zbl 0457.35073
[19] Mueller, C.E.; Weissler, F.B., Single point blow-up for a general semilinear heat equation, Indiana univ. math. J., 34, 881-913, (1985) · Zbl 0597.35057
[20] Reed, M., Abstract nonlinear wave equations, Lecture notes in mathematics, 507, (1976), Springer New York
[21] Simon, J., Regularité de la composition de deux fonctions et applications, Boll. un. mat. ital., 16B, 5, 501-522, (1979) · Zbl 0409.35076
[22] Sobolevskii, P.E., Study of navier – stokes equations by the methods of the theory of parabolic equations in Banach spaces, Soviet math. dokl., 5, 720-723, (1964)
[23] Stein, E.M., Singular integrals and differentiability properties of functions, (1970), Princeton University Press Princeton · Zbl 0207.13501
[24] Strauss, W.A., Nonlinear invariant wave equations, (), 197-249
[25] Strichartz, R., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke math. J., 44, 705-714, (1977) · Zbl 0372.35001
[26] Tsutsumi, Y., L2-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcialaj ekvacioj, 30, 115-125, (1987) · Zbl 0638.35021
[27] T\scSUTSUMI Y., Lower estimates of blow-up solutions for nonlinear Schrödinger equations, preprint.
[28] von Wahl, W., Regularity questions for the navier – stokes equations, (), 538-542
[29] von Wahl, W., The equations of navier – stokes and abstract parabolic equations, (1985), Vieweg Wiesbaden · Zbl 1409.35168
[30] von Wahl, W., Global solutions to evolutions equations of parabolic type, (), 254-266
[31] Weinstein, M., On the structure and formation of singularities of solutions to nonlinear dispersive equations, Communs partial diff. eqns, 11, 545-565, (1986) · Zbl 0596.35022
[32] Weissler, F.B., Local existence and nonexistence for semilinear parabolic equations in L^p, Indiana univ. math J., 29, 79-102, (1980) · Zbl 0443.35034
[33] Weissler, F.B., The navier – stokes initial value problem in L^p, Archs ration. mech. analaysis, 74, 219-230, (1980) · Zbl 0454.35072
[34] Weissler, F.B., Existence and non-existence of global solutions for a semilinear heat equation, Israel J. math., 38, 29-40, (1981) · Zbl 0476.35043
[35] Weissler, F.B., L^p-energy and blow-up for a semilinear heat equation, (), 545-551, Part 2
[36] Yajima, K., Existence of solutions for Schrödinger evolutions equations, Communs math. phys., 110, 415-426, (1987) · Zbl 0638.35036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.