Salbany, Sergio; Romaguera, Salvador On countably compact quasi-pseudometrizable spaces. (English) Zbl 0706.54027 J. Aust. Math. Soc., Ser. A 49, No. 2, 231-240 (1990). Summary: We prove the following results: (1) A quasi-metrizable space is compact if and only if every compatible quasi-metric has a quasi-metric left d- sequential completion. (2) A quasi-pseudometrizable space is countably compact if and only if every compatible quasi-pseudometric is pointwise bounded. (3) A quasi-pseudometrizable space is compact if and only if every compatible quasi-pseudometric is precompact. Cited in 6 Documents MSC: 54E45 Compact (locally compact) metric spaces 54E52 Baire category, Baire spaces 54D30 Compactness 54E35 Metric spaces, metrizability 54E50 Complete metric spaces Keywords:left d-Cauchy sequence; left d-(weakly, sequentially) complete quasi- pseudometric space; quasi-metric completion; (countably) compact space; quasi-metrizable space; quasi-metric left d-sequential completion; quasi- pseudometrizable space PDF BibTeX XML Cite \textit{S. Salbany} and \textit{S. Romaguera}, J. Aust. Math. Soc., Ser. A 49, No. 2, 231--240 (1990; Zbl 0706.54027) OpenURL