# zbMATH — the first resource for mathematics

Permutation based testing on covariance separability. (English) Zbl 1417.62152
Summary: Separability is an attractive feature of covariance matrices or matrix variate data, which can improve and simplify many multivariate procedures. Due to its importance, testing separability has attracted much attention in the past. The procedures in the literature are of two types, likelihood ratio test (LRT) and Rao’s score test (RST). Both are based on the normality assumption or the large-sample asymptotic properties of the test statistics. In this paper, we develop a new approach that is very different from existing ones. We propose to reformulate the null hypothesis (the separability of a covariance matrix of interest) into many sub-hypotheses (the separability of the sub-matrices of the covariance matrix), which are testable using a permutation based procedure. We then combine the testing results of sub-hypotheses using the Bonferroni and two-stage additive procedures. Our permutation based procedures are inherently distribution free; thus it is robust to non-normality of the data. In addition, unlike the LRT, they are applicable to situations when the sample size is smaller than the number of unknown parameters in the covariance matrix. Our numerical study and data examples show the advantages of our procedures over the existing LRT and RST.
##### MSC:
 62H15 Hypothesis testing in multivariate analysis 62G10 Nonparametric hypothesis testing 65C60 Computational problems in statistics (MSC2010)
##### Software:
coin; MVN; NPCovSepTest
Full Text:
##### References:
 [1] Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley, New York · Zbl 1039.62044 [2] Allen, GI; Tibshirani, R., Inference with transposable data: modelling the effects of row and column correlations, J R Stat Soc Ser B Stat Methodol, 74, 721-743, (2012) [3] Bertoluzzo, F.; Pesarin, F.; Salmaso, L., On multi-sided permutation tests, Commun Stat Simul Comput, 42, 1380-1390, (2013) · Zbl 1347.62065 [4] Dawid, AP, Some matrix-variate distribution theory: notational considerations and a Bayesian application, Biometrika, 68, 265-274, (1981) · Zbl 0464.62039 [5] Dutilleul, P., The mle algorithm for the matrix normal distribution, J Stat Comput Simul, 64, 105-123, (1999) · Zbl 0960.62056 [6] Filipiak, K.; Klein, D.; Roy, A., Score test for a separable covariance structure with the first component as compound symmetric correlation matrix, J Multivar Anal, 150, 105-124, (2016) · Zbl 1347.62092 [7] Filipiak, K.; Klein, D.; Roy, A., A comparison of likelihood ratio tests and Rao’s score test for three separable covariance matrix structures, Biom J, 59, 192-215, (2017) · Zbl 1357.62315 [8] Finos, L.; Salmaso, L., A new nonparametric approach for multiplicity control: optimal subset procedures, Comput Stat, 20, 643-654, (2005) · Zbl 1091.62032 [9] Fuentes, M., Testing for separability of spatial-temporal covariance functions, J Stat Plan Inference, 136, 447-466, (2006) · Zbl 1077.62076 [10] Glanz H, Carvalho L (2013) An expectation-maximization algorithm for the matrix normal distribution. arXiv preprint arXiv:1309.6609 · Zbl 1395.62123 [11] Gupta AK, Nagar DK (1999) Matrix variate distribution. Chapman Hall/CRC, New York · Zbl 0981.62043 [12] Henze, N.; Zirkler, B., A class of invariant consistent tests for multivariate normality, Commun Stat Theory Methods, 19, 3595-3617, (1990) · Zbl 0738.62068 [13] Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2017) Package “coin”. Conditional inference procedures in a permutation test framework. ver. 1.2-2. 2017. https://cran.r-project.org/web/packages/coin/index.html. Accessed 02 July 2018 [14] Klingenberg, B.; Solari, A.; Salmaso, L.; Pesarin, F., Testing marginal homogeneity against stochastic order in multivariate ordinal data, Biometrics, 65, 452-462, (2009) · Zbl 1165.62082 [15] Korkmaz, S.; Goksuluk, D.; Zararsiz, D., MVN: an R package for assessing multivariate normality, R J, 6, 151-162, (2014) [16] Lee, SJ; Lee, S.; Lim, J.; Ahn, SJ; Kim, TW, Cluster analysis of tooth size in subjects with normal occlusion, Am J Orthod Dentofac Orthop, 132, 796-800, (2007) [17] Lee, SH; Bachman, AH; Yu, D.; Lim, J.; Ardekani, BA, Predicting progression from mild cognitive impairment to Alzheimers disease using longitudinal callosal atrophy, Alzheimers Dement Diagn Assess Dis Monit, 2, 68-74, (2016) [18] Li, B.; Genton, MG; Sherman, M., A nonparametric assessment of properties of space-time covariance functions, J Am Stat Assoc, 102, 736-744, (2007) · Zbl 1172.62311 [19] Li, E.; Lim, J.; Lee, S-J, Likelihood ratio test for correlated multivariate samples, J Multivar Anal, 101, 541-554, (2010) · Zbl 1181.62088 [20] Li, E.; Lim, J.; Kim, K.; Lee, S-J, Distribution-free tests of mean vectors and covariance matrices for multivariate paired data, Metrika, 75, 833-854, (2012) · Zbl 1410.62063 [21] Lu, N.; Zimmerman, DL, The likelihood ratio test for a separable covariance matrix, Stat Probab Lett, 73, 449-457, (2005) · Zbl 1071.62052 [22] Mardia, KV, Measures of multivariate skewness and kurtosis with applications, Biometrika, 57, 519-530, (1970) · Zbl 0214.46302 [23] Mitchell, MW; Genton, MG; Gumpertz, ML, A likelihood ratio test for separability of covariances, J Multivar Anal, 97, 1025-1043, (2006) · Zbl 1089.62063 [24] Pesarin F, Salmaso L (2010) Permutation tests for complex data. Wiley, New York · Zbl 1359.62158 [25] Roy, A.; Leiva, R., Likelihood ratio tests for triply multivariate data with structured correlation on spatial repeated measurements, Stat Probab Lett, 78, 1971-1980, (2008) · Zbl 1147.62343 [26] Roy, A.; Leiva, R., Estimating and testing a structured covariance matrix for three-level multivariate data, Commun Stat Theory Methods, 40, 1945-1963, (2011) · Zbl 1216.62095 [27] Royston, P., Some techniques for assessing multivariate normality based on the Shapiro-Wilk W, Appl Stat, 32, 121-133, (1983) · Zbl 0536.62043 [28] Royston, P., Approximating the Shapiro-Wilk W test for non-normality, Stat Comput, 2, 117-119, (1992) [29] Shapiro, SS; Wilk, MB, An analysis of variance test for normality (complete samples), Biometrika, 52, 591-611, (1964) · Zbl 0134.36501 [30] Sheng, J.; Qiu, P., p-Value calculation for multi-stage additive tests, J Stat Comput Simul, 77, 1057-1064, (2007) · Zbl 1131.62090 [31] Strasser, H.; Weber, C., On the asymptotic theory of permutation statistics, Math Methods Stat, 8, 220-250, (1999) · Zbl 1103.62346 [32] Tan, KM; Witten, D., Sparse biclustering of transposable data, J Comput Gr Stat, 23, 985-1008, (2014) [33] Viroli, C., Finite mixtures of matrix normal distributions for classifying three-way data, Stat Comput, 21, 511-522, (2010) · Zbl 1221.62083 [34] Wang, X.; Stokes, L.; Lim, J.; Chen, M., Concomitant of multivariate order statistics with application to judgment post-stratification, J Am Stat Assoc, 101, 1693-1704, (2006) · Zbl 1171.62330 [35] Wang, H.; West, M., Bayesian analysis of matrix normal graphical models, Biometrika, 96, 821-834, (2009) · Zbl 1179.62042 [36] Yin, J.; Li, H., Model selection and estimation in the matrix normal graphical model, J Multivar Anal, 107, 119-140, (2012) · Zbl 1236.62058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.