# zbMATH — the first resource for mathematics

A fuzzy approach to robust regression clustering. (English) Zbl 1414.62240
Summary: A new robust fuzzy regression clustering method is proposed. We estimate coefficients of a linear regression model in each unknown cluster. Our method aims to achieve robustness by trimming a fixed proportion of observations. Assignments to clusters are fuzzy: observations contribute to estimates in more than one single cluster. We describe general criteria for tuning the method. The proposed method seems to be robust with respect to different types of contamination.

##### MSC:
 62H30 Classification and discrimination; cluster analysis (statistical aspects)
##### Keywords:
robustness; fuzzy clustering; trimming; regression clustering
##### Software:
Algorithm 39; flexclust; otrimle; TCLUST
Full Text:
##### References:
 [1] Ali, AM; Karmakar, GC; Dooley, LS, Review on fuzzy clustering algorithms, J Adv Comput, 2, 169-181, (2008) [2] Bezdek JC (1981) Pattern recognition with fuzzy objective function algoritms. Plenum Press, New York · Zbl 0503.68069 [3] Bock HH (1969) The equivalence of two extremal problems and its application to the iterative classification of multivariate data. Paper presented at the Workshop “Medizinische Statistik”, Forschungsinstitut Oberwolfach [4] Bryant, PG, Large-sample results for optimization-based clustering methods, J Classif, 8, 31-44, (1991) · Zbl 0747.62057 [5] Celeux, G.; Govaert, A., Classification EM algorithm for clustering and two stochastic versions, Comput Stat Data Anal, 13, 315-332, (1992) · Zbl 0937.62605 [6] Cerioli, A.; Farcomeni, A.; Riani, M., Robust distances for outlier free goodness-of-fit testing, Comput Stat Data Anal, 65, 29-45, (2013) · Zbl 06958962 [7] Cerioli, A.; Farcomeni, A., Error rates for multivariate outlier detection, Comput Stat Data Anal, 55, 544-553, (2011) · Zbl 1247.62192 [8] Coretto P, Hennig C (2016) Robust improper maximum likelihood: tuning, computation and a comparison with other methods for robust Gaussian clustering. J Am Stat Assoc (in press) · Zbl 1442.62138 [9] DeSarbo, WS; Cron, WL, A maximum likelihood methodology for clusterwise linear regression, J Classif, 5, 249-282, (1988) · Zbl 0692.62052 [10] D’Urso, P.; Massari, R.; Santoro, A., Robust fuzzy regression analysis, Inf Sci, 18, 4154-4174, (2011) · Zbl 1242.62073 [11] D’Urso, P.; Giovanni, L.; Massari, R., Trimmed fuzzy clustering for interval-values data, Adv Data Anal Classif, 9, 21-40, (2014) [12] Farcomeni, A., Snipping for robust $$k$$-means clustering under component-wise contamination, Stat Comput, 24, 909-917, (2014) · Zbl 1332.62203 [13] Farcomeni, A., Robust constrained clustering in presence of entry-wise outliers, Technometrics, 56, 102-111, (2014) [14] Farcomeni A, Greco L (2015) Robust methods for data reduction. Chapman and Hall/CRC Press, Boca Raton · Zbl 1311.62006 [15] Fritz, H.; García-Escudero, LA; Mayo-Iscar, A., Robust constrained fuzzy clustering, Inf Sci, 245, 38-52, (2013) · Zbl 1321.62070 [16] Fritz, H.; García-Escudero, LA; Mayo-Iscar, A., A fast algorithm for robust constrained clustering, Comput Stat Data Anal, 61, 124-136, (2013) · Zbl 1349.62264 [17] García-Escudero, LA; Gordaliza, A.; Matrán, C.; Mayo-Iscar, A., A general trimming approach to robust cluster analysis, Ann Stat, 36, 1324-1345, (2008) · Zbl 1360.62328 [18] García-Escudero, LA; Gordaliza, A.; Matrán, C.; Mayo-Iscar, A., Robust clusterwise linear regression through trimming, Comput Stat Data Anal, 54, 3057-3069, (2010) · Zbl 1284.62198 [19] García-Escudero, LA; Gordaliza, A.; Matrán, C.; Mayo-Iscar, A., Exploring the number of groups in robust model-based clustering, Stat Comput, 21, 585-599, (2011) · Zbl 1221.62093 [20] Gath, I.; Geva, AB, Unsupervised optimal fuzzy clustering, IEEE Trans Pattern Anal Mach Intell, 11, 773-781, (1989) · Zbl 0709.62592 [21] Gustafson DE, Kessel WC (1979) Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings of the IEEE international conference on fuzzy systems, vol 25, pp 761-766 [22] Hathaway, RJ; Bezdek, JC, Switching regression models and fuzzy clustering, IEEE Trans Fuzzy Syst, 1, 195-204, (1993) [23] Hennig, C.; Liao, TF, How to find an appropriate clustering for mixed types of variables with application to socioeconomic stratification, J R Stat Sci Ser C (Appl Stat), 62, 309-369, (2013) [24] Honda K, Ohyama T, Ichihashi H, Notsu A (2008) FCM-type switching regression with alternating least square method. In: Proceedings of the IEEE international conference on fuzzy systems (FUZZ 2008), pp 122-127 [25] Hosmer, DW, Maximum likelihood estimates of the parameters of a mixture of two regression lines, Commun Stat, 3, 995-1006, (1974) · Zbl 0294.62085 [26] Hubert, L.; Arabie, P., Comparing partitions, J Classif, 2, 193-218, (1985) · Zbl 0587.62128 [27] Ingrassia, S.; Minotti, SC; Punzo, A., Model-based clustering via linear cluster-weighted models, Comput Stat Data Anal, 71, 159-182, (2014) · Zbl 06975380 [28] Kim, J.; Krishnapuram, R.; Davé, RN, Application of the least trimmed squares technique to prototype-based clustering, Pattern Recognit Lett, 17, 633-641, (1996) [29] Leisch, F., A toolbox for K-centroids cluster analysis, Comput Stat Data Anal, 51, 526-544, (2006) · Zbl 1157.62439 [30] Lenstra, AK; Lenstra, JK; Rinnooy Kan, AHG; Wansbeek, TJ, Two lines least squares, Ann Discrete Math, 66, 201-211, (1982) · Zbl 0495.62071 [31] McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York · Zbl 0963.62061 [32] Perry PO (2009) Cross-validation for unsupervised learning. arXiv:0909.3052 [33] Ritter G (2015) Robust cluster analysis and variable selection. CRC Press, Boca Raton · Zbl 1341.62037 [34] Rousseeuw, PJ; Kaufman, L.; Trauwaert, E., Fuzzy clustering using scatter matrices, Comput Stat Data Anal, 23, 135-151, (1996) · Zbl 0900.62321 [35] Ruspini, EH, A new approach to clustering, Inf Control, 29, 22-32, (1969) · Zbl 0192.57101 [36] Sadaaki M, Masao M (1997) Fuzzy $$c$$-means as a regularization and maximum entropy approach. In: Proceedings of the 7th international fuzzy systems association world congress (IFSA’97), vol 2. University of Economics, Prague, pp 86-92 [37] Song, W.; Yao, W.; Xing, Y., Robust mixture regression model fitting by Laplace distribution, Comput Stat Data Anal, 71, 128-137, (2014) · Zbl 06975377 [38] Späth, H., A fast algorithm for clusterwise linear regression, Computing, 29, 175-181, (1982) · Zbl 0485.65030 [39] Symons, MJ, Clustering criteria and multivariate normal mixtures, Biometrics, 37, 35-43, (1981) · Zbl 0473.62048 [40] Trauwaert, E.; Kaufman, L.; Rousseeuw, P., Fuzzy clustering algorithms based on the maximum likelihood principle, Fuzzy Sets Syst, 42, 213-227, (1991) · Zbl 0741.62065 [41] Wu KL, Yang MS, Hsieh, JN (2009) Alternative fuzzy switching regression. In: Proceedings of the international multiconference of engineers and computer scientists 2009 (IMECS 2009), 18-20 Mar, vol 1. Newswood Limited, Hong Kong [42] Yao, W.; Li, L., A new regression model: modal linear regression, Scand J Stat, 41, 656-671, (2014) · Zbl 1309.62119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.