×

zbMATH — the first resource for mathematics

A mathematical motivation for complex-valued convolutional networks. (English) Zbl 07062543
Summary: A complex-valued convolutional network (convnet) implements the repeated application of the following composition of three operations, recursively applying the composition to an input vector of nonnegative real numbers: (1) convolution with complex-valued vectors, followed by (2) taking the absolute value of every entry of the resulting vectors, followed by (3) local averaging. For processing real-valued random vectors, complex-valued convnets can be viewed as data-driven multiscale windowed power spectra, data-driven multiscale windowed absolute spectra, data-driven multiwavelet absolute values, or (in their most general configuration) data-driven nonlinear multiwavelet packets. Indeed, complex-valued convnets can calculate multiscale windowed spectra when the convnet filters are windowed complex-valued exponentials. Standard real-valued convnets, using rectified linear units (ReLUs), sigmoidal (e.g., logistic or tanh) nonlinearities, or max pooling, for example, do not obviously exhibit the same exact correspondence with data-driven wavelets (whereas for complex-valued convnets, the correspondence is much more than just a vague analogy). Courtesy of the exact correspondence, the remarkably rich and rigorous body of mathematical analysis for wavelets applies directly to (complex-valued) convnets.
MSC:
68 Computer science
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bay, H., Ess, A., Tuytelaars, T., & Gool, L. V. (2008). Speeded-up robust features (SURF). Computer Vision Image Understanding, 110(3), 346-359. ,
[2] Bruna, J., & Mallat, S. (2013). Invariant scattering convolutional networks. IEEE Trans. Pattern Analysis Machine Intel., 35(8), 1872-1886. ,
[3] Bruna, J., Mallat, S., Bacry, E., & Muzy, J.-F. (2015). Intermittent process analysis with scattering moments. Ann. Statist., 43(1), 323-351. , · Zbl 1308.62168
[4] Chintala, S., Ranzato, M., Szlam, A., Tian, Y., Tygert, M., & Zaremba, W. (2015). Scale-invariant learning and convolutional networks (Tech. Rep.). 1506.08230, arXiv. · Zbl 1392.68340
[5] Coifman, R. R., & Donoho, D. (1995). Translation-invariant denoising. In A. Antoniadis & G. Oppenheim (Eds.), Wavelets and statistics (pp. 125-150). New York: Springer. , · Zbl 0866.94008
[6] Coifman, R. R., Meyer, Y., Quake, S., & Wickerhauser, M. V. (1994). Signal processing and compression with wavelet packets. In J. S. Byrnes, J. L. Byrnes, K. A. Hargreaves, & K. Berry (Eds.), Wavelets and their applications (pp. 363-379). New York: Springer. , · Zbl 0818.94005
[7] Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Society Conf. Computer Vision and Pattern Recognition 2005 (vol. 1, pp. 886-893). Piscataway, NJ: IEEE. ,
[8] Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia: SIAM. , · Zbl 0776.42018
[9] Donoho, D., Mallat, S., von Sachs, R., & Samuelides, Y. (2003). Locally stationary covariance and signal estimation with macrotiles. IEEE Trans. Signal Processing, 51(3), 614-627. , · Zbl 1369.94132
[10] Haensch, R., & Hellwich, O. (2010). Complex-valued convolutional neural networks for object detection in PolSAR data. In Proceedings of the 8th European Conf. EUSAR (pp. 1-4). Piscataway, NJ: IEEE.
[11] Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Master’s thesis, University of Toronto.
[12] Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25 (pp. 1097-1105). Red Hook, NY: Curran.
[13] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. ,
[14] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE, 86(11), 2278-2324. ,
[15] Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the 7th IEEE Internat. Conf. Computer Vision (vol. 2, pp. 1150-1157). Piscataway, N.J: IEEE.
[16] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Internat. J. Computer Vision, 60(2), 91-110. ,
[17] Mallat, S. (2008). A wavelet tour of signal processing: The sparse way (3rd ed.). Orlando, FL: Academic Press. · Zbl 1170.94003
[18] Mallat, S. (2010). Recursive interferometric representations. In Proc. of the EUSIPCO Conf. 2010 (pp. 716-720). Piscataway, NJ: IEEE.
[19] Mehta, P., & Schwab, D. J. (2014). An exact mapping between the variational renormalization group and deep learning. (Tech. Rep.). 1410.3831, arXiv.
[20] Meyer, Y. (1993). Wavelets and operators. Cambridge: Cambridge University Press. , · Zbl 0810.42015
[21] Meyer, Y., & Coifman, R. R. (1997). Wavelets: Calderón-Zygmund and multilinear operators. Cambridge: Cambridge University Press. · Zbl 0916.42023
[22] Oyallon, E., & Mallat, S. (2015). Deep roto-translation scattering for object classification. In Proceedings of the IEEE Computer Society Conf. Computer Vision and Pattern Recognition 2015 (vol. 1, pp. 2865-2873). Piscataway, NJ: IEEE. ,
[23] Poggio, T., Mutch, J., Leibo, J., Rosasco, L., & Tacchetti, A. (2012). The computational magic of the ventral stream: Sketch of a theory (and why some deep architectures work) (Tech. Rep. MIT-CSAIL-TR-2012-035), Cambridge, MA: MIT CSAIL.
[24] Rabiner, L. R., & Schafer, R. W. (2007). Introduction to digital speech processing.Hanover, MA: Now Publishers. · Zbl 1162.94003
[25] Saito, N.& Coifman, R. R. (1995). Local discriminant bases and their applications. J. Math. Imaging Vision, 5(4), 337-358. , · Zbl 0863.94004
[26] Simoncelli, E. P., & Freeman, W. T. (1995). The steerable pyramid: A flexible architecture for multi-scale derivative computation. In Proceedings of the Internat. Conf. Image Processing 1995 (vol. 3, pp. 444-447). Piscataway, NJ: IEEE.
[27] Srivastava, A., Lee, A. B., Simoncelli, E. P., & Zhu, S. (2003). On advances in statistical modeling of natural images. J. Math. Imaging Vision, 18(1), 17-33. , · Zbl 1033.68133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.