Simulation neurotechnologies for advancing brain research: parallelizing large networks in NEURON. (English) Zbl 1414.92032

Summary: Large multiscale neuronal network simulations are of increasing value as more big data are gathered about brain wiring and organization under the auspices of a current major research initiative, such as Brain Research through Advancing Innovative Neurotechnologies. The development of these models requires new simulation technologies. We describe here the current use of the NEURON simulator with message passing interface (MPI) for simulation in the domain of moderately large networks on commonly available high-performance computers (HPCs). We discuss the basic layout of such simulations, including the methods of simulation setup, the run-time spike-passing paradigm, and postsimulation data storage and data management approaches. Using the Neuroscience Gateway, a portal for computational neuroscience that provides access to large HPCs, we benchmark simulations of neuronal networks of different sizes (500–100,000 cells), and using different numbers of nodes (1–256). We compare three types of networks, composed of either Izhikevich integrate-and-fire neurons (I&F), single-compartment Hodgkin-Huxley (HH) cells, or a hybrid network with half of each. Results show simulation run time increased approximately linearly with network size and decreased almost linearly with the number of nodes. Networks with I&F neurons were faster than HH networks, although differences were small since all tested cells were point neurons with a single compartment.


92B20 Neural networks for/in biological studies, artificial life and related topics
92-08 Computational methods for problems pertaining to biology
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI


[1] Bezaire, M., & Soltesz, I. (2013). Quantitative assessment of CA1 local circuits: Knowledge base for interneuron-pyramidal cell connectivity. Hippocampus, 23, 751-785. ,
[2] Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., … Destexhe, A. (2007). Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci., 23, 349-398. ,
[3] Carnevale, N., & Hines, M. (2006). The NEURON book. Cambridge: Cambridge University Press. ,
[4] Cornelis, H., Rodriguez, A., Coop, A., & Bower, J. (2012). Python as a federation tool for GENESIS 3.0. PloS One, 7, e29018. ,
[5] Davison, A., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., … Yger, P. (2008). PyNN: A common interface for neuronal network simulators. Frontiers in Neuroinformatics, 2. ,
[6] Davison, A., Hines, M., & Muller, E. (2009). Trends in programming languages for neuroscience simulations. Front. Neurosci., 3, 374-380. ,
[7] Djurfeldt, M., Davison, A., & Eppler, J. (2014). Efficient generation of connectivity in neuronal networks from simulator-independent descriptions. Frontiers in Neuroinformatics, 8, 43. ,
[8] Djurfeldt, M., Hjorth, J., Eppler, J., Dudani, N., Helias, M., Potjans, T., … Ekeberg, O. (2010). Run-time interoperability between neuronal network simulators based on the MUSIC framework. Neuroinformatics, 8, 43-60. ,
[9] Eppler, J., Helias, M., Muller, E., Diesmann, M., & Gewaltig, M. (2009). Pynest: A convenient interface to the nest simulator. Frontiers in Neuroinformatics, 2, 12.
[10] Gardner, D., Toga, A. W., Ascoli, G. A., Beatty, J. T., Brinkley, J. F., Dale, A. M., …Wong, S. T. C. (2003). Towards effective and rewarding data sharing. Neuroinformatics, 1(3), 289-295. ,
[11] Gewaltig, M.-O., & Diesmann, M. (2007). NEST (NEural simulation tool). Scholarpedia, 2(4), 1430. ,
[12] Goodman, D., & Brette, R. (2009). The Brian simulator. Frontiers in Neuroscience, 3(2), 192. ,
[13] Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J., Ishii, S., … Diesmann, M. (2012). Supercomputers ready for use as discovery machines for neuroscience. Frontiers in Neuroinformatics, 6, 26. ,
[14] Hines, M., & Carnevale, N. (2001). NEURON: A tool for neuroscientists. Neuroscientist, 7, 123-135. ,
[15] Hines, M., & Carnevale, N. (2004). Discrete event simulation in the NEURON environment. Neurocomputing, 58, 1117-1122. ,
[16] Hines, M., & Carnevale, N. (2008). Translating network models to parallel hardware in neuron. J. Neurosci. Methods, 169, 425-455. ,
[17] Hines, M., Davison, A., & Muller, E. (2009a). NEURON and Python. Frontiers in Neuroinformatics, 3, 1. ,
[18] Hines, M. L., Davison, A. P., & Muller, E. (2009b). NEURON and Python. Frontiers in Neuroinformatics, 3, 1.
[19] Hines, M., Eichner, H., & Schürmann, F. (2008). Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J. Comput. Neurosci., 25, 203-210. , · Zbl 07055144
[20] Hines, M., Kumar, S., & Schürmann, F. (2011). Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci., 5, 49. ,
[21] Hines, M., Morse, T., & Carnevale, N. (2007). Model structure analysis in NEURON: Toward interoperability among neural simulators. Methods Mol. Biol., 401, 91-102. ,
[22] Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117(4), 500-544. ,
[23] Izhikevich, E. M. (2007). Dynamical systems in neuroscience. Cambridge, MA: MIT Press.
[24] Linton, M. A., Vissides, J. M., & Calder, P. R. (1989). Composing user interfaces with interviews. Computer, 22, 8-22. ,
[25] Lytton, W. (2006). Neural query system: Data-mining from within the NEURON simulator. Neuroinformatics, 4, 163-176. ,
[26] Lytton, W., Contreras, D., Destexhe, A., & Steriade, M. (1997). Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J. Neurophysiol., 77, 1679-1696.
[27] Lytton, W., & Hines, M. (2004). Hybrid neural networks: Combining abstract and realistic neural units. IEEE Engineering in Medicine and Biology Society Proceedings, 6, 3996-3998.
[28] Lytton, W., & Hines, M. (2005). Independent variable timestep integration of individual neurons for network simulations. Neural Comput., 17, 903-921. ,
[29] Lytton, W., Neymotin, S., & Hines, M. (2008). The virtual slice setup. J. Neurosci. Methods, 171, 309-315. ,
[30] Lytton, W., & Stewart, M. (2007). Data mining through simulation. Methods Mol. Biol., 401, 155-166. ,
[31] McDougal, R., Bulanova, A., & Lytton, W. W. (2016). Reproducibility in computational neuroscience models and simulations. IEEE Transactions on Biomedical Engineering PP(99). doi:10.1109/TBME.2016.2539602.
[32] McDougal, R. A., Hines, M. L., & Lytton, W. W. (2013). Reaction-diffusion in the NEURON simulator. Frontiers in Neuroinformatics, 7. ,
[33] Migliore, M., Cannia, C., Lytton, W., & Hines, M. (2006). Parallel network simulations with NEURON. J. Computational Neuroscience, 6, 119-129. , · Zbl 1182.68351
[34] Ray, S., & Bhalla, U. (2008). PyMOOSE: interoperable scripting in Python for MOOSE. Frontiers in Neuroinformatics, 2, 6.
[35] Salmon, J., Moraes, M., Dror, R., & Shaw, D. (2011). Parallel random numbers: As easy as 1,2,3. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. New York: ACM. ,
[36] Schmitt, O., & Eipert, P. (2012). Neuroviisas: Approaching multiscale simulation of the rat connectome. Neuroinformatics, 10, 243-267. ,
[37] Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A., Martone, M., & Carnevale, N. (2013). Introducing the neuroscience gateway. In CEUR Workshop Proceedings. http://ceur-ws.org/HOWTOSUBMIT.html
[38] Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A., Martone, M., & Carnevale, N. T. (2015). Early experiences in developing and managing the neuroscience gateway. Concurrency and Computation: Practice and Experience, 27, 473-488. ,
[39] Sneddon, M., Faeder, J., & Emonet, T. (2011). Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nature Methods, 8(2), 177-183. ,
[40] Yamazaki, T., Ikeno, H., Okumura, Y., Satoh, S., Kamiyama, Y., Hirata, Y., … Usui, S. (2011). Simulation platform: A cloud-based online simulation environment. Neural Netw., 24, 693-698. ,
[41] Zenke, F., & Gerstner, W. (2014). Limits to high-speed simulations of spiking neural networks using general-purpose computers. Frontiers in Neuroinformatics, 8, 76. ,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.