×

zbMATH — the first resource for mathematics

A characterization of some families of Cohen-Macaulay, Gorenstein and/or Buchsbaum rings. (English) Zbl 1422.13021
The organization of this paper as follows: in Section 1, the concept of convex polytope/polyhedron semigroup is defined and some basic notions and results used in the rest of the work are given. In Section 2, the set \(L_{\mathbb{R}\geq}(P)\setminus \bigcup_{j\in\mathbb{N}}jP\) is completely described by using geometric tools. In Section 3, the Cohen-Macaulay property is studied and an algorithm that checks for this property in affine simplicial convex polyhedron semigroups is given. A family of Gorenstein affine semigroups is given in Section 4. Lastly, in Section 5, Buchsbaum affine simplicial convex polyhedron semigroups are characterized and a family of such semigroups is obtained.
MSC:
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bass, H., On the ubiquity of Gorenstein rings, Math. Z., 82, 8-28, (1963) · Zbl 0112.26604
[2] Bruns, W.; Gubeladze, J., (Polytopes, Rings, and K-Heory. Polytopes, Rings, and K-Heory, Springer Monographs in Mathematics, (2009), Springer: Springer Dordrecht) · Zbl 1168.13001
[3] Bruns, W.; Herzog, J., (Cohen-Macaulay Rings. Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, vol. 39, (1993), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0788.13005
[4] W. Bruns, B. Ichim, T. Römer, C. Söger, The Normaliz project, available at http://www.home.uni-osnabrueck.de/wbruns/normaliz/.
[5] Cox, D. A.; Little, J. B.; Schenck, H. K., (Toric Varieties. Toric Varieties, Graduate Studies in Mathematics, vol. 124, (2011), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1223.14001
[6] D’Anna, M., Ring and semigroup constructions, (Chapman, S.; Fontana, M.; Geroldinger, A.; Olberding, B., Multiplicative Ideal Theory and Factorization Theory. Multiplicative Ideal Theory and Factorization Theory, Springer Proc. Math. Stat., vol. 170, (2016), Springer), 97-115 · Zbl 1401.13070
[7] Fulton, W., (Introduction to Toric Varieties. Introduction to Toric Varieties, Annals of Mathematics Studies, vol. 131, (1993), Princeton University Press: Princeton University Press Princeton, NJ) · Zbl 0813.14039
[8] J.I. García-García, D. Marín-Aragón, A. Vigneron-Tenorio, PyConvexHullSemigroup, a Python library for computations in convex hull semigroups, available at http://hdl.handle.net/10498/20125.
[9] García-García, J. I.; Marín-Aragón, D.; Vigneron-Tenorio, A., An extension of wilf’s conjecture to affine semigroups, Semigroup Forum, (2017), http://dx.doi.org/10.1007/s00233-017-9906-1
[10] García-García, J. I.; Moreno-Frías, M. A.; Sánchez-R.-Navarro, A.; Vigneron-Tenorio, A., Affine convex body semigroups, Semigroup Forum, 87, 2, 331-350, (2013) · Zbl 1291.20058
[11] J.I. García-García, A. Sánchez-R.-Navarro, A. Vigneron-Tenorio, Multiple Convex Body Semigroups and Buchsbaum Rings, to appear in Journal of Commutative Algebra, https://projecteuclid.org/euclid.jca/1507276949#ui-tabs-1.
[12] García-García, J. I.; Vigneron-Tenorio, A., Computing families of Cohen-Macaulay and Gorenstein rings, Semigroup Forum, 88, 3, 610-620, (2014) · Zbl 1319.13016
[13] García-Sánchez, P. A.; Rosales, J. C., On buchsbaum simplicial affine semigroups, Pacific J. Math., 202, 2, 329-339, (2002) · Zbl 1059.20058
[14] Goto, S.; Suzuki, N.; Watanabe, K., On affine semigroup rings, Japan. J. Math. (N.S.), 2, 1, 1-12, (1976) · Zbl 0361.20066
[15] D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
[16] Hochster, M., Rings of invariants of Tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math., 96, 2, 318-337, (1972) · Zbl 0233.14010
[17] Huneke, C., Hyman Bass and ubiquity: Gorenstein rings, (Algebra, \(K\)-Theory, Groups, and Education (New York, 1997). Algebra, \(K\)-Theory, Groups, and Education (New York, 1997), Contemp. Math., vol. 243, (1999), Amer. Math. Soc: Amer. Math. Soc Providence, RI), 55-78 · Zbl 0960.13008
[18] Python Software Foundation, Python Language Reference, version 3.5, available at http://www.python.org.
[19] Rosales, J. C.; García-Sánchez, P. A., On cohen-macaulay and gorenstein simplicial affine semigroups, Proc. Edinb. Math. Soc. (2), 41, 3, 517-537, (1998) · Zbl 0904.20048
[20] Stückrad, J.; Vogel, W., Buchsbaum Rings and Applications. An Interaction Between Algebra, Geometry and Topology, (1986), Springer-Verlag: Springer-Verlag Berlin · Zbl 0606.13018
[21] Trung, N. V.; Hoa, L. T., Affine semigroups and cohen-macaulay rings generated by monomials, Trans. Amer. Math. Soc., 298, 1, 145-167, (1986) · Zbl 0631.13020
[22] X Encuentro Andaluz de Matemática Discreta (X EAMD), La Línea de la Concepción, 10-11 de julio de 2017, available at http://www.xeamd.es.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.