×

Reaction-diffusion equations in immunology. (English. Russian original) Zbl 1415.92112

Comput. Math. Math. Phys. 58, No. 12, 1967-1976 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 12, 2048-2059 (2018).
Summary: The paper is devoted to the recent works on reaction-diffusion models of virus infection dynamics in human and animal organisms. Various regimes of infection propagation in tissues are described. In particular, it is shown that infection can spread in tissues of organs as a reaction-diffusion wave. Methods for studying the conditions of the existence of wave modes of the time and space dynamics of infections is discussed.

MSC:

92C60 Medical epidemiology
92D30 Epidemiology
35Q92 PDEs in connection with biology, chemistry and other natural sciences

Software:

sbioPN
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Perelson, A. S.; Kirschner, D. E.; De Boer, R., Dynamics of HIV infection of CD4\(^{ + }\), Math. Biosci., 114, 81-125, (1993) · Zbl 0796.92016
[2] M. A. Nowak and C. R. M. Bangham, “Population dynamics of immune responses to persistent viruses,” Science 272, 74-79 (1996).
[3] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 1582-1586, (1996)
[4] Perelson, A. S., Modelling viral and immune system dynamics, Nat. Rev. Immunol., 2, 28-36, (2002)
[5] Wodarz, D.; Nowak, M. A., Mathematical models of HIV pathogenesis and treatment, BioEssays., 24, 1178-1187, (2002)
[6] Alizon, S.; Magnus, C., Modelling the course of an HIV infection: Insights from ecology and evolution, Viruses., 4, 1984-2013, (2012)
[7] Gadhamsetty, S.; Coorens, T.; de Boer, R. J., Notwithstanding circumstantial alibis, cytotoxic T cells can be major killers of HIV-1 infected cells,’, J. Virology, 90, 7066-7083, (2016)
[8] Nowak, M. A.; Bonhoeffer, S.; Hill, A. M.; Boehme, R.; Thomas, H. C.; McDade, H., Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. U.S.A., 93, 4398-4402, (1996)
[9] Neumann, A. U.; Lam, N. P.; Dahari, H.; Gretch, D. R.; Wiley, T. E.; Layden, T. J.; Perelson, A. S., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-\(\alpha \), Science, 282, 103-107, (1998)
[10] De Boer, R. J.; Oprea, M.; Antia, R.; Murali-Krishna, K.; Ahmed, R.; Perelson, A. S., Recruitment Times, proliferation, and apoptosis rates during the CD8\(^{ + }\), J. Virology, 75, 10663-10669, (2001)
[11] De Boer, R. J.; Homann, D.; Perelson, A. S., Different dynamics of CD4\(^{ + }\), J. Immunol., 171, 3928-3935, (2003)
[12] Althaus, C. L.; Ganusov, V. V.; De Boer, R. J., Dynamics of CD8\(^{ + }\), J. Immunol., 179, 2944-2951, (2007)
[13] G. I. Marchuk, SDelected Works, Vol. 5 Mathematical Modeling in Immunology and Medicine (Inst. Vychisl. Mat., Moscow, Ross. Alad. Nauk, 2018) [in Russian].
[14] G. I. Marchuk, “Mathematical modelling of immune response in infectious diseases,” in Mathematics and Its Applications, Vol. 395 (Kluwer, Dordrecht, 1997). · Zbl 0876.92015
[15] Bocharov, G. A.; Marchuk, G. I., Applied problems of mathematical modeling in immunology, Comput. Math. Math. Phys., 40, 1830-1844, (2000) · Zbl 0997.92021
[16] Marchuk, G. I.; Petrov, R. V.; Romanyukha, A. A.; Bocharov, G. A., Mathematical model of antiviral immune response. I. Data analysis, generalized picture construction and parameters evaluation for hepatitis B, J. Theor. Biol., 151, 1-40, (1991)
[17] Marchuk, G. I.; Romanyukha, A. A.; Bocharov, G. A., Mathematical model of antiviral immune response. II. Parameters identification for acute viral hepatitis B, J. Theor. Biol., 151, 41-70, (1991)
[18] Bocharov, G. A., Mathematical model of antiviral immune response. III. Influenza A virus infection, J. Theor. Biol., 167, 323-360, (1994)
[19] Bocharov, G. A., Modelling the dynamics of LCMV infection in mice: Conventional and exhaustive CTL responses, J. Theor. Biol., 192, 283-308, (1998)
[20] Bocharov, G.; Klenerman, P.; Ehl, S., Modelling the dynamics of LCMV infection in mice: II. Compartment structure and immunopathology, J. Theor. Biol., 221, 349-378, (2003)
[21] Bocharov, G.; Ludewig, B.; Bertoletti, A.; Klenerman, P.; Junt, T.; Krebs, P.; Luzyanina, T.; Fraser, C.; Anderson, R. M., Underwhelming the immune response: Effect of slow virus growth on CD8\(^{ + }\), J. Virol., 78, 2247-2254, (2004)
[22] Bocharov, G.; Argilaguet, J.; Meyerhans, A., Understanding experimental LCMV infection of mice: The role of mathematical models, J. Immunol. Res. No., 16, 1-10, (2015)
[23] Funk, G. A.; Jansen, V. A.; Bonhoeffer, S.; Killingback, T., Spatial models of virus-immune dynamics, J. Theor. Biol., 233, 221-236, (2005)
[24] Strain, M. C.; Richman, D. D.; Wong, J. K.; Levine, H., Spatiotemporal dynamics of HIV propagation, J. Theor. Biol., 218, 85-96, (2002)
[25] Beauchemin, C., Probing the effects of the well-mixed assumption on viral infection dynamics, J. Theor. Biol., 242, 464-477, (2006)
[26] Sewald, X.; Motamedi, N.; Mothes, W., Viruses exploit the tissue physiology of the host to spread in vivo, Current Opinion in Cell Biol., 41, 81-90, (2016)
[27] Mothes, W.; Sherer, N. M.; Jin, J.; Zhong, P., Virus cell-to-cell transmission, J. Virol., 84, 8360-8368, (2010)
[28] Graw, F.; Martin, D. N.; Perelson, A. S.; Uprichard, S. L.; Dahari, H., Quantification of hepatitis C virus cell-to-cell spread using a stochastic modeling approach, J. Virol., 89, 6551-6561, (2015)
[29] Prokopiou, S. A.; Barbaroux, L.; Bernard, S.; Mafille, J.; Leverrier, Y.; Arpin, C.; Marvel, J.; Gandrillon, O.; Crauste, F., Multiscale modeling of the early CD8 T-cell immune response in lymph nodes: An integrative study, Computation, 2, 159-181, (2014)
[30] Dunia, R.; Bonnecaze, R., Mathematical modeling of viral infection dynamics in spherical organs, J. Math. Biol., 67, 1425-1455, (2013) · Zbl 1279.92051
[31] Bocharov, G.; Danilov, A.; Vassilevski, Yu.; Marchuk, G. I.; Chereshnev, V. A.; Ludewig, B., Reaction-diffusion modelling of interferon distribution in secondary lymphoid organs, Math. Model. Nat. Phenom., 6, 13-26, (2011)
[32] Kislitsyn, A.; Savinkov, R.; Novkovic, M.; Onder, L.; Bocharov, G., Computational approach to 3D modeling of the lymph node geometry, Computation, 3, 222-234, (2015)
[33] Haseltine, E. L.; Lam, V.; Yin, J.; Rawlings, J. B., Image-guided modeling of virus growth and spread, Bull Math Biol., 70, 1730-1748, (2008) · Zbl 1166.92027
[34] Su, B.; Zhou, W.; Dorman, K. S.; Jones, D. E., Mathematical modelling of immune response in tissues, Comput. Math. Meth. Medicine, 10, 9-38, (2009) · Zbl 1317.92044
[35] Stancevic, O.; Angstmann, C. N.; Murray, J. M.; Henry, B. I., Turing patterns from dynamics of early HIV infection, Bull. Math. Biol., 75, 774-795, (2013) · Zbl 1273.92035
[36] Getto, Ph.; Kimmel, M.; Marciniak-Czochra, A., Modelling and analysis of dynamics of viral infection of cells and of interferon resistance, J. Math. Anal. Appl., 344, 821-850, (2008) · Zbl 1137.92019
[37] M. Labadie and A. Marciniak-Czochra, “A reaction-diffusion model for viral infection and immune response,” 2011. \( < \)\( \)hal-00546034v2\( > \)\( \)
[38] Bertolusso, R.; Kimmel, M., Spatial and stochastic effects in a model of viral infection, Fund. Inform., 118, 327-343, (2012) · Zbl 1306.92057
[39] G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, V. Volpert, “Spatiotemporal dynamics of virus infection spreading in tissues,” PlosOne, 2016. doi 10.1371/journal.pone.0168576 · Zbl 1406.92553
[40] Trofimchuk, S.; Volpert, V., Traveling waves for a bistable reaction-diffusion equation with delay, SIAM J. Math. Anal., 50, 1175-1190, (2018) · Zbl 1411.34090
[41] G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, and V. Volpert, “Modelling the dynamics of virus infection and immune response in space and time,” Int. J. Parallel, Emergent Distrib. Syst. 32, (2017). · Zbl 1406.92553
[42] G. Bocharov, B. Ludewig, A. Meyerhans, and V. Volpert, Mathematical Immunology of Virus Infections (Springer, 2018). · Zbl 1401.92002
[43] Bouchnita, A.; Bocharov, G.; Meyerhans, A.; Volpert, V., Towards a multiscale model of acute HIV infection, Computations, 5, 1-22, (2017)
[44] A. Bouchnita, G. Bocharov, A. Meyerhans, and V. Volpert, “Hybrid approach to model the spatial regulation of T cell responses,” BMC Immunol., 18 (2017).
[45] V. Volpert, “Existence of reaction-diffusion waves in a model of immune response,” J. Fixed Points Appl., (2018), in press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.