×

Impact of vacuum stability constraints on the phenomenology of supersymmetric models. (English) Zbl 1414.81245

Summary: We present a fast and efficient method for studying vacuum stability constraints in multi-scalar theories beyond the Standard Model. This method is designed for a reliable use in large scale parameter scans. The minimization of the scalar potential is done with the well-known polynomial homotopy continuation, and the decay rate of a false vacuum in a multi-scalar theory is estimated by an exact solution of the bounce action in the one-field case. We compare to more precise calculations of the tunnelling path at the tree- and one-loop level and find good agreement for the resulting constraints on the parameter space. Numerical stability, runtime and reliability are significantly improved compared to approaches existing in the literature. This procedure is applied to several phenomenologically interesting benchmark scenarios defined in the Minimal Supersymmetric Standard Model. We utilize our efficient approach to study the impact of simultaneously varying multiple fields and illustrate the importance of correctly identifying the most dangerous minimum among the minima that are deeper than the electroweak vacuum.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T10 Model quantum field theories
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Sher, M., Electroweak Higgs Potentials and Vacuum Stability, Phys. Rept., 179, 273, (1989)
[2] J.A. Casas, J.R. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett.B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].
[3] J.R. Espinosa and M. Quirós, Improved metastability bounds on the standard model Higgs mass, Phys. Lett.B 353 (1995) 257 [hep-ph/9504241] [INSPIRE].
[4] G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys.B 609 (2001) 387 [hep-ph/0104016] [INSPIRE]. · Zbl 0971.81580
[5] Espinosa, JR; Giudice, GF; Riotto, A., Cosmological implications of the Higgs mass measurement, JCAP, 05, 002, (2008)
[6] Ellis, J.; Espinosa, JR; Giudice, GF; Hoecker, A.; Riotto, A., The Probable Fate of the Standard Model, Phys. Lett., B 679, 369, (2009)
[7] Degrassi, G.; etal., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP, 08, 098, (2012)
[8] Bezrukov, F.; Kalmykov, MY; Kniehl, BA; Shaposhnikov, M., Higgs Boson Mass and New Physics, JHEP, 10, 140, (2012)
[9] K.G. Chetyrkin and M.F. Zoller, β-function for the Higgs self-interaction in the Standard Model at three-loop level, JHEP04 (2013) 091 [Erratum ibid.1309 (2013) 155] [arXiv:1303.2890] [INSPIRE].
[10] Buttazzo, D.; etal., Investigating the near-criticality of the Higgs boson, JHEP, 12, 089, (2013)
[11] Andreassen, A.; Frost, W.; Schwartz, MD, Consistent Use of the Standard Model Effective Potential, Phys. Rev. Lett., 113, 241801, (2014)
[12] Lalak, Z.; Lewicki, M.; Olszewski, P., Higher-order scalar interactions and SM vacuum stability, JHEP, 05, 119, (2014)
[13] M.F. Zoller, Standard Model β-functions to three-loop order and vacuum stability, in 17th International Moscow School of Physics and 42nd ITEP Winter School of Physics, Moscow Russia (2014) [arXiv:1411.2843] [INSPIRE].
[14] Bednyakov, AV; Kniehl, BA; Pikelner, AF; Veretin, OL, Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision, Phys. Rev. Lett., 115, 201802, (2015)
[15] Branchina, V.; Messina, E.; Sher, M., Lifetime of the electroweak vacuum and sensitivity to Planck scale physics, Phys. Rev., D 91, (2015)
[16] Iacobellis, G.; Masina, I., Stationary configurations of the Standard Model Higgs potential: electroweak stability and rising inflection point, Phys. Rev., D 94, (2016)
[17] Andreassen, A.; Frost, W.; Schwartz, MD, Scale Invariant Instantons and the Complete Lifetime of the Standard Model, Phys. Rev., D 97, (2018)
[18] Chigusa, S.; Moroi, T.; Shoji, Y., State-of-the-Art Calculation of the Decay Rate of Electroweak Vacuum in the Standard Model, Phys. Rev. Lett., 119, 211801, (2017)
[19] Chigusa, S.; Moroi, T.; Shoji, Y., Decay Rate of Electroweak Vacuum in the Standard Model and Beyond, Phys. Rev., D 97, 116012, (2018)
[20] S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev.D 15 (1977) 2929 [Erratum ibid.D 16 (1977) 1248]
[21] C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev.D 16 (1977) 1762 [INSPIRE].
[22] P.M. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett.B 603 (2004) 219 [Erratum ibid.B 629 (2005) 114] [hep-ph/0406231] [INSPIRE].
[23] A. Barroso, P.M. Ferreira and R. Santos, Charge and CP symmetry breaking in two Higgs doublet models, Phys. Lett.B 632 (2006) 684 [hep-ph/0507224] [INSPIRE].
[24] A. Barroso, P.M. Ferreira, R. Santos and J.P. Silva, Stability of the normal vacuum in multi-Higgs-doublet models, Phys. Rev.D 74 (2006) 085016 [hep-ph/0608282] [INSPIRE].
[25] M. Maniatis, A. von Manteuffel, O. Nachtmann and F. Nagel, Stability and symmetry breaking in the general two-Higgs-doublet model, Eur. Phys. J.C 48 (2006) 805 [hep-ph/0605184] [INSPIRE].
[26] A. Barroso, P.M. Ferreira and R. Santos, Neutral minima in two-Higgs doublet models, Phys. Lett.B 652 (2007) 181 [hep-ph/0702098] [INSPIRE].
[27] Barroso, A.; Ferreira, PM; Ivanov, IP; Santos, R., Metastability bounds on the two Higgs doublet model, JHEP, 06, 045, (2013)
[28] Barroso, A.; Ferreira, PM; Ivanov, IP; Santos, R.; Silva, JP, Evading death by vacuum, Eur. Phys. J., C 73, 2537, (2013)
[29] Muhlleitner, M.; Sampaio, MOP; Santos, R.; Wittbrodt, J., The N2HDM under Theoretical and Experimental Scrutiny, JHEP, 03, 094, (2017)
[30] Frere, JM; Jones, DRT; Raby, S., Fermion Masses and Induction of the Weak Scale by Supergravity, Nucl. Phys., B 222, 11, (1983)
[31] Claudson, M.; Hall, LJ; Hinchliffe, I., Low-Energy Supergravity: False Vacua and Vacuous Predictions, Nucl. Phys., B 228, 501, (1983)
[32] Drees, M.; Gluck, M.; Grassie, K., A New Class of False Vacua in Low-energy N = 1 Supergravity Theories, Phys. Lett., B 157, 164, (1985)
[33] Gunion, JF; Haber, HE; Sher, M., Charge/Color Breaking Minima and a-Parameter Bounds in Supersymmetric Models, Nucl. Phys., B 306, 1, (1988)
[34] Komatsu, H., New Constraints on Parameters in the Minimal Supersymmetric Model, Phys. Lett., B 215, 323, (1988)
[35] P. Langacker and N. Polonsky, Implications of Yukawa unification for the Higgs sector in supersymmetric grand unified models, Phys. Rev.D 50 (1994) 2199 [hep-ph/9403306] [INSPIRE].
[36] J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys.B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].
[37] A. Strumia, Charge and color breaking minima and constraints on the MSSM parameters, Nucl. Phys.B 482 (1996) 24 [hep-ph/9604417] [INSPIRE].
[38] A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev.D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].
[39] J.A. Casas and S. Dimopoulos, Stability bounds on flavor violating trilinear soft terms in the MSSM, Phys. Lett.B 387 (1996) 107 [hep-ph/9606237] [INSPIRE].
[40] C. Le Mouel and G. Moultaka, Novel electroweak symmetry breaking conditions from quantum effects in the MSSM, Nucl. Phys.B 518 (1998) 3 [hep-ph/9711356] [INSPIRE].
[41] S. Abel and T. Falk, Charge and color breaking in the constrained MSSM, Phys. Lett.B 444 (1998) 427 [hep-ph/9810297] [INSPIRE].
[42] C. Le Mouel, Optimal charge and color breaking conditions in the MSSM, Nucl. Phys.B 607 (2001) 38 [hep-ph/0101351] [INSPIRE].
[43] P.M. Ferreira, Minimization of a one loop charge breaking effective potential, Phys. Lett.B 512 (2001) 379 [Erratum ibid.B 518 (2001) 334] [hep-ph/0102141] [INSPIRE].
[44] P.M. Ferreira, A Full one loop charge and color breaking effective potential, Phys. Lett.B 509 (2001) 120 [Erratum ibid.B 518 (2001) 333] [hep-ph/0008115] [INSPIRE].
[45] P.M. Ferreira, One-loop charge and colour breaking associated with the top Yukawa coupling, hep-ph/0406234 [INSPIRE].
[46] Park, J-h, Metastability bounds on flavour-violating trilinear soft terms in the MSSM, Phys. Rev., D 83, (2011)
[47] Altmannshofer, W.; Carena, M.; Shah, NR; Yu, F., Indirect Probes of the MSSM after the Higgs Discovery, JHEP, 01, 160, (2013)
[48] Carena, M.; Gori, S.; Low, I.; Shah, NR; Wagner, CEM, Vacuum Stability and Higgs Diphoton Decays in the MSSM, JHEP, 02, 114, (2013) · Zbl 1342.83340
[49] Camargo-Molina, JE; O’Leary, B.; Porod, W.; Staub, F., Stability of the CMSSM against sfermion VEVs, JHEP, 12, 103, (2013)
[50] Chattopadhyay, U.; Dey, A., Exploring MSSM for Charge and Color Breaking and Other Constraints in the Context of Higgs@125 GeV, JHEP, 11, 161, (2014)
[51] Camargo-Molina, JE; Garbrecht, B.; O’Leary, B.; Porod, W.; Staub, F., Constraining the Natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature, Phys. Lett., B 737, 156, (2014)
[52] D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and Color Breaking Constraints in MSSM after the Higgs Discovery at LHC, JHEP02 (2014) 110 [Erratum ibid.1803 (2018) 149] [arXiv:1310.1932] [INSPIRE].
[53] N. Blinov and D.E. Morrissey, Vacuum Stability and the MSSM Higgs Mass, JHEP03 (2014) 106 [arXiv:1310.4174] [INSPIRE].
[54] M. Bobrowski, G. Chalons, W.G. Hollik and U. Nierste, Vacuum stability of the effective Higgs potential in the Minimal Supersymmetric Standard Model, Phys. Rev.D 90 (2014) 035025 [Erratum ibid.D 92 (2015) 059901] [arXiv:1407.2814] [INSPIRE].
[55] Altmannshofer, W.; Frugiuele, C.; Harnik, R., Fermion Hierarchy from Sfermion Anarchy, JHEP, 12, 180, (2014)
[56] Hollik, WG, Charge and color breaking constraints in the Minimal Supersymmetric Standard Model associated with the bottom Yukawa coupling, Phys. Lett., B 752, 7, (2016)
[57] Hollik, WG, A new view on vacuum stability in the MSSM, JHEP, 08, 126, (2016)
[58] J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious: A Tool For Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars, Eur. Phys. J.C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].
[59] P. Basler and M. Mühlleitner, BSMPT (Beyond the Standard Model Phase Transitions): A tool for the electroweak phase transition in extended Higgs sectors, Comput. Phys. Commun.237 (2019) 62 [arXiv:1803.02846] [INSPIRE].
[60] H. Bahl et al., MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios for Run 2 and Beyond, arXiv:1808.07542 [INSPIRE].
[61] Coleman, SR; Weinberg, EJ, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev., D 7, 1888, (1973)
[62] Weinberg, S., The Cosmological Constant Problem, Rev. Mod. Phys., 61, 1, (1989) · Zbl 1129.83361
[63] A. Morgan, Solving polynomial systems using continuation for engineering and scientific problems, Prentice-Hall, Upper Saddle River U.S.A. (1987). · Zbl 0733.65031
[64] Maniatis, M.; Mehta, D., Minimizing Higgs Potentials via Numerical Polynomial Homotopy Continuation, Eur. Phys. J. Plus, 127, 91, (2012)
[65] R. Apreda, M. Maggiore, A. Nicolis and A. Riotto, Gravitational waves from electroweak phase transitions, Nucl. Phys.B 631 (2002) 342 [gr-qc/0107033] [INSPIRE].
[66] I. Dasgupta, Estimating vacuum tunneling rates, Phys. Lett.B 394 (1997) 116 [hep-ph/9610403] [INSPIRE].
[67] J.M. Moreno, M. Quirós and M. Seco, Bubbles in the supersymmetric standard model, Nucl. Phys.B 526 (1998) 489 [hep-ph/9801272] [INSPIRE].
[68] J.M. Cline, G.D. Moore and G. Servant, Was the electroweak phase transition preceded by a color broken phase?, Phys. Rev.D 60 (1999) 105035 [hep-ph/9902220] [INSPIRE].
[69] P. John, Bubble wall profiles with more than one scalar field: A Numerical approach, Phys. Lett.B 452 (1999) 221 [hep-ph/9810499] [INSPIRE].
[70] J.M. Cline, J.R. Espinosa, G.D. Moore and A. Riotto, String mediated electroweak baryogenesis: A Critical analysis, Phys. Rev.D 59 (1999) 065014 [hep-ph/9810261] [INSPIRE].
[71] T. Konstandin and S.J. Huber, Numerical approach to multi dimensional phase transitions, JCAP06 (2006) 021 [hep-ph/0603081] [INSPIRE].
[72] Park, J-h, Constrained potential method for false vacuum decays, JCAP, 02, 023, (2011)
[73] C.L. Wainwright, CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun.183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].
[74] Masoumi, A.; Olum, KD; Shlaer, B., Efficient numerical solution to vacuum decay with many fields, JCAP, 01, 051, (2017)
[75] P. Athron, C. Balázs, M. Bardsley, A. Fowlie, D. Harries and G. White, BubbleProfiler: finding the field profile and action for cosmological phase transitions, arXiv:1901.03714 [INSPIRE].
[76] F.C. Adams, General solutions for tunneling of scalar fields with quartic potentials, Phys. Rev.D 48 (1993) 2800 [hep-ph/9302321] [INSPIRE].
[77] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
[78] Masoumi, A.; Olum, KD; Wachter, JM, Approximating tunneling rates in multi-dimensional field spaces, JCAP, 10, 022, (2017)
[79] Andreassen, A.; Farhi, D.; Frost, W.; Schwartz, MD, Direct Approach to Quantum Tunneling, Phys. Rev. Lett., 117, 231601, (2016)
[80] Andreassen, A.; Farhi, D.; Frost, W.; Schwartz, MD, Precision decay rate calculations in quantum field theory, Phys. Rev., D 95, (2017)
[81] Nilles, HP, Supersymmetry, Supergravity and Particle Physics, Phys. Rept., 110, 1, (1984)
[82] Haber, HE; Kane, GL, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept., 117, 75, (1985)
[83] J.F. Gunion and H.E. Haber, Higgs Bosons in Supersymmetric Models. 1., Nucl. Phys.B 272 (1986) 1 [Erratum ibid.B 402 (1993) 567] [INSPIRE].
[84] Krauss, ME; Opferkuch, T.; Staub, F., Spontaneous Charge Breaking in the NMSSM — Dangerous or not?, Eur. Phys. J., C 77, 331, (2017)
[85] K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun.133 (2000) 43 [hep-ph/0004189] [INSPIRE]. · Zbl 0970.81087
[86] Schmidt, B.; Steinhauser, M., CRunDec: a C++ package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun., 183, 1845, (2012)
[87] Herren, F.; Steinhauser, M., Version 3 of RunDec and CRunDec, Comput. Phys. Commun., 224, 333, (2018)
[88] L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev.D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
[89] M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys.B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].
[90] D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys.B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
[91] M. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the\( \overline{t}b{H}^{+} \)interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys.B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].
[92] J. Guasch, W. Hollik and S. Penaranda, Distinguishing Higgs models in\( H\to b\overline{b}/H\to {\tau}^{+}{\tau}^{-} \), Phys. Lett.B 515 (2001) 367 [hep-ph/0106027] [INSPIRE].
[93] ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb−1of pp collisions at\( \sqrt{s}=13 \)TeV with the ATLAS detector, JHEP01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
[94] CMS collaboration, Search for additional neutral MSSM Higgs bosons in the ττ final state in proton-proton collisions at\( \sqrt{s}=13 \)TeV, JHEP09 (2018) 007 [arXiv:1803.06553] [INSPIRE].
[95] Bechtle, P.; etal., The Light and Heavy Higgs Interpretation of the MSSM, Eur. Phys. J., C 77, 67, (2017)
[96] J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious.
[97] S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J.C 9 (1999) 343 [hep-ph/9812472] [INSPIRE]. · Zbl 0946.81506
[98] S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun.124 (2000) 76 [hep-ph/9812320] [INSPIRE]. · Zbl 0946.81506
[99] G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J.C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].
[100] M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP02 (2007) 047 [hep-ph/0611326] [INSPIRE]. · Zbl 1198.81015
[101] Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G., High-Precision Predictions for the Light CP-Even Higgs Boson Mass of the Minimal Supersymmetric Standard Model, Phys. Rev. Lett., 112, 141801, (2014)
[102] Bahl, H.; Hollik, W., Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations, Eur. Phys. J., C 76, 499, (2016)
[103] Bahl, H.; Heinemeyer, S.; Hollik, W.; Weiglein, G., Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass, Eur. Phys. J., C 78, 57, (2018)
[104] Branchina, V.; Contino, F.; Ferreira, PM, Electroweak vacuum lifetime in two Higgs doublet models, JHEP, 11, 107, (2018)
[105] J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev.D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
[106] N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
[107] Carena, M.; Low, I.; Shah, NR; Wagner, CEM, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP, 04, 015, (2014)
[108] P.S. Bhupal Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP12 (2014) 024 [Erratum ibid.1511 (2015) 147] [arXiv:1408.3405] [INSPIRE].
[109] Carena, M.; Haber, HE; Low, I.; Shah, NR; Wagner, CEM, Complementarity between Nonstandard Higgs Boson Searches and Precision Higgs Boson Measurements in the MSSM, Phys. Rev., D 91, (2015)
[110] Bernon, J.; Gunion, JF; Haber, HE; Jiang, Y.; Kraml, S., Scrutinizing the alignment limit in two-Higgs-doublet models: m_{h} = 125 GeV, Phys. Rev., D 92, (2015)
[111] J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models. II. m_{\(H\)} = 125 GeV, Phys. Rev.D 93 (2016) 035027 [arXiv:1511.03682] [INSPIRE].
[112] Haber, HE; Heinemeyer, S.; Stefaniak, T., The Impact of Two-Loop Effects on the Scenario of MSSM Higgs Alignment without Decoupling, Eur. Phys. J., C 77, 742, (2017)
[113] ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36 fb−1of pp collision data at\( \sqrt{s}=13 \)TeV with the ATLAS detector, Phys. Rev.D 98 (2018) 052005 [arXiv:1802.04146] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.