×

zbMATH — the first resource for mathematics

Emergence of oscillations in a mixed-mechanism phosphorylation system. (English) Zbl 1415.92092
Summary: This work investigates the emergence of oscillations in one of the simplest cellular signaling networks exhibiting oscillations, namely the dual-site phosphorylation and dephosphorylation network (futile cycle), in which the mechanism for phosphorylation is processive, while the one for dephosphorylation is distributive (or vice versa). The fact that this network yields oscillations was shown recently by T. Suwanmajo and J. Krishnan [“Mixed mechanisms of multi-site phosphorylation”, J. R. Soc. Interface 12, No. 107, 20141405 (2015; doi:10\.1098/rsif.2014.1405)]. Our results, which significantly extend their analyses, are as follows. First, in the three-dimensional space of total amounts, the border between systems with a stable versus unstable steady state is a surface defined by the vanishing of a single Hurwitz determinant. Second, this surface consists generically of simple Hopf bifurcations. Next, simulations suggest that when the steady state is unstable, oscillations are the norm. Finally, the emergence of oscillations via a Hopf bifurcation is enabled by the catalytic and association constants of the distributive part of the mechanism; if these rate constants satisfy two inequalities, then the system generically admits a Hopf bifurcation. Our proofs are enabled by the Routh-Hurwitz criterion, a Hopf bifurcation criterion due to Yang, and a monomial parametrization of steady states.
Reviewer: Reviewer (Berlin)

MSC:
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
34C23 Bifurcation theory for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aoki, K.; Yamada, M.; Kunida, K.; Yasuda, S.; Matsuda, M., Processive phosphorylation of ERK MAP kinase in mammalian cells, Proc Natl Acad Sci USA, 108, 12675-12680, (2011)
[2] Atkins P, De Paula J, Keeler J (2018) Atkins’ physical chemistry. Oxford University Press, Oxford
[3] Bure EG, Rozenvasser YN (1974) On investigations of autooscillating system sensitivity, no 7. Avtomat. i Telemekh, pp 9-17
[4] Conradi, C.; Mincheva, M., Catalytic constants enable the emergence of bistability in dual phosphorylation, J R Soc Interface, 11, 20140158, (2014)
[5] Conradi, C.; Shiu, A., A global convergence result for processive multisite phosphorylation systems, Bull Math Biol, 77, 126-155, (2015) · Zbl 1334.92169
[6] Conradi, C.; Shiu, A., Dynamics of post-translational modification systems: recent progress and future challenges, Biophys J, 114, 507-515, (2018)
[7] Conradi, C.; Feliu, E.; Mincheva, M.; Wiuf, C., Identifying parameter regions for multistationarity, PLoS Comput Biol, 13, e1005751, (2017)
[8] Dhooge, A.; Govaerts, W.; Kuznetsov, YA, MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans Math Softw, 29, 141-164, (2003) · Zbl 1070.65574
[9] Domijan, M.; Kirkilionis, M., Bistability and oscillations in chemical reaction networks, J Math Biol, 59, 467-501, (2009) · Zbl 1311.92088
[10] Eithun, M.; Shiu, A., An all-encompassing global convergence result for processive multisite phosphorylation systems, Math Biosci, 291, 1-9, (2017) · Zbl 1379.92013
[11] Errami, H.; Eiswirth, M.; Grigoriev, D.; Seiler, WM; Sturm, T.; Weber, A., Detection of Hopf bifurcations in chemical reaction networks using convex coordinates, J Comput Phys, 291, 279-302, (2015) · Zbl 1349.92168
[12] Ferrell, JE; Ha, SH, Ultrasensitivity part II: multisite phosphorylation, stoichiometric inhibitors, and positive feedback, Trends Biochem Sci, 39, 556-569, (2014)
[13] Gantmacher FR (1959) Matrix theory, vol 21. Chelsea, New York · Zbl 0085.01001
[14] Gatermann, K.; Eiswirth, M.; Sensse, A., Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems, J Symb Comput, 40, 1361-1382, (2005) · Zbl 1120.13033
[15] Gelfand IM, Kapranov MM, Zelevinsky AV (1994) Discriminants, resultants and multidimensional determinants. Birkhäuser, Basel · Zbl 0827.14036
[16] Guckenheimer J, Holmes P (2013) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol 42. Springer, Berlin · Zbl 0515.34001
[17] Hadač, O.; Muzika, F.; Nevoral, V.; Přibyl, M.; Schreiber, I., Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade, PLoS ONE, 12, 1-25, (2017)
[18] Hell, J.; Rendall, AD, A proof of bistability for the dual futile cycle, Nonlinear Anal Real, 24, 175-189, (2015) · Zbl 1331.34089
[19] Hilioti, Z.; Sabbagh, W.; Paliwal, S.; Bergmann, A.; Goncalves, MD; Bardwell, L.; Levchenko, A., Oscillatory phosphorylation of yeast Fus3 MAP kinase controls periodic gene expression and morphogenesis, Curr Biol, 18, 1700-1706, (2008)
[20] Hu, H.; Goltsov, A.; Bown, JL; Sims, AH; Langdon, SP; Harrison, DJ; Faratian, D., Feedforward and feedback regulation of the MAPK and PI3K oscillatory circuit in breast cancer, Cell Signal, 25, 26-32, (2013)
[21] Ingalls, BP, Autonomously oscillating biochemical systems: parametric sensitivity of extrema and period, Syst Biol, 1, 62-70, (2004)
[22] Ingalls, B.; Mincheva, M.; Roussel, MR, Parametric sensitivity analysis of oscillatory delay systems with an application to gene regulation, Bull Math Biol, 79, 1539-1563, (2017) · Zbl 1372.92029
[23] Johnston, MD, Translated chemical reaction networks, Bull Math Biol, 76, 1081-1116, (2014) · Zbl 1297.92096
[24] Johnston MD, Müller S, Pantea C (2018) A deficiency-based approach to parametrizing positive equilibria of biochemical reaction systems. Preprint. arXiv:1805.09295
[25] Liu, WM, Criterion of Hopf bifurcations without using eigenvalues, J Math Anal Appl, 182, 250-256, (1994) · Zbl 0794.34033
[26] Lozada-Cruz G (2012) The simple application of the implicit function theorem, vol XIX, no 1. Boletin de la Asociatión Matemática Venezolana · Zbl 1370.26029
[27] Millán, MP; Dickenstein, A., The structure of MESSI biological systems, SIAM J Appl Dyn Syst, 17, 1650-1682, (2018) · Zbl 1395.92071
[28] Millán, MP; Turjanski, AG, MAPK’s networks and their capacity for multistationarity due to toric steady states, Math Biosci, 262, 125-137, (2015) · Zbl 1315.92029
[29] Millán, MP; Dickenstein, A.; Shiu, A.; Conradi, C., Chemical reaction systems with toric steady states, Bull Math Biol, 74, 1027-1065, (2012) · Zbl 1251.92016
[30] Müller, S.; Feliu, E.; Regensburger, G.; Conradi, C.; Shiu, A.; Dickenstein, A., Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry, Found Comput Math, 16, 69-97, (2016) · Zbl 1382.92272
[31] Ode, KL; Ueda, HR, Design principles of phosphorylation-dependent timekeeping in eukaryotic circadian clocks, Cold Spring Harb Perspect Biol, 10, a028357, (2017)
[32] Rao, S., Global stability of a class of futile cycles, J Math Biol, 74, 709-726, (2017) · Zbl 1361.92027
[33] Rao, S., Stability analysis of the Michaelis-Menten approximation of a mixed mechanism of a phosphorylation system, Math Biosci, 301, 159-166, (2018) · Zbl 1392.92035
[34] Rubinstein, BY; Mattingly, HH; Berezhkovskii, AM; Shvartsman, SY, Long-term dynamics of multisite phosphorylation, Mol Biol Cell, 27, 2331-2340, (2016)
[35] Salazar, C.; Höfer, T., Multisite protein phosphorylation—from molecular mechanisms to kinetic models, FEBS J, 276, 3177-3198, (2009)
[36] Suwanmajo, T.; Krishnan, J., Mixed mechanisms of multi-site phosphorylation, J R Soc Interface, 12, 20141405, (2015)
[37] Thomson, M.; Gunawardena, J., The rational parameterisation theorem for multisite post-translational modification systems, J Theor Biol, 261, 626-636, (2009) · Zbl 1403.92085
[38] Tung, H-R, Precluding oscillations in Michaelis-Menten approximations of dual-site phosphorylation systems, Math Biosci, 306, 56-59, (2018) · Zbl 1409.92108
[39] Virshup DM, Forger DB (2009) Keeping the beat in the rising heat. Cell 137(4):602-604
[40] Wolfram Research Inc. (2018) Mathematica, Version 11.3, Champaign, IL
[41] Yang, X., Generalized form of Hurwitz-Routh criterion and Hopf bifurcation of higher order, Appl Math Lett, 15, 615-621, (2002) · Zbl 1006.34041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.