×

Multiresolution molecular mechanics: adaptive analysis. (English) Zbl 1425.74026

Summary: The concurrent atomistic/continuum coupling method Multiresolution Molecular Mechanics (MMM) has been presented for statics [Q. Yang et al., ibid. 258, 26–38 (2013; Zbl 1296.74006)] and dynamics [E. Biyikli et al., ibid. 274, 42–55 (2014; Zbl 1296.74005)], its convergence and error structure has been analyzed [Q. Yang et al., ibid. 269, 20–45 (2014; Zbl 1296.74132)], and a unified and consistent framework for general finite element shape functions has been introduced [Q. Yang and A. C. To, ibid. 283, 384–418 (2015; Zbl 1423.74038)]. The current work presents the adaptivity analysis of the MMM method. To start, the rationale and formulation of the MMM method are briefly introduced. Later, two main features of the adaptivity scheme, refinement and coarsening, are discussed and described in detail and step-by-step procedures are outlined. The adaptivity is tested using three numerical examples: (i) 1-D wave propagation, (ii) 2-D dislocation, and (iii) 3-D nanoindentation. The results of numerical examples agree well with those of full atomistic simulations. Furthermore, control parameters of adaptivity schemes offer much flexibility to adjust between accuracy and efficiency. The introduced adaptivity schemes are simple, effective, and accurate owing to the consistency and robustness of MMM.

MSC:

74A25 Molecular, statistical, and kinetic theories in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

OVITO; AMBER; NAMD2
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aubertin, P.; Réthoré, J.; De Borst, R., Energy conservation of atomistic/continuum coupling, Internat. J. Numer. Methods Engrg., 78, 1365-1386, (2009) · Zbl 1183.74011
[2] Jebahi, M.; Dau, F.; Charles, J.-L.; Iordanoff, I., Multiscale modeling of complex dynamic problems: an overview and recent developments, Arch. Comput. Methods Eng., 1-38, (2014)
[3] Abraham, F. F.; Broughton, J. Q.; Bernstein, N.; Kaxiras, E., Spanning the length scales in dynamic simulation, Comput. Phys., 12, 538-546, (1998)
[4] Mo, Y.; Turner, K. T.; Szlufarska, I., Friction laws at the nanoscale, Nature, 457, 1116-1119, (2009)
[5] Miller, R. E.; Tadmor, E. B., The quasicontinuum method: overview, applications and current directions, J. Comput.-Aided Mater. Des., 9, 203-239, (2002)
[6] Gracie, R.; Belytschko, T., An adaptive concurrent multiscale method for the dynamic simulation of dislocations, Internat. J. Numer. Methods Engrg., 86, 575-597, (2011) · Zbl 1216.74021
[7] Abraham, F. F.; Walkup, R.; Gao, H.; Duchaineau, M.; De La Rubia, T. D.; Seager, M., Simulating materials failure by using up to one billion atoms and the world’s fastest computer: work-hardening, Proc. Natl. Acad. Sci., 99, 5783-5787, (2002)
[8] Marian, J.; Knap, J.; Campbell, G., A quasicontinuum study of nanovoid collapse under uniaxial loading in ta, Acta Mater., 56, 2389-2399, (2008)
[9] Miller, R. E.; Tadmor, E. B., Hybrid continuum mechanics and atomistic methods for simulating materials deformation and failure, MRS Bull., 32, 920-926, (2007)
[10] Tadmor, E. B.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Phil. Mag. A, 73, 1529-1563, (1996)
[11] Eidel, B.; Stukowski, A., A variational formulation of the quasicontinuum method based on energy sampling in clusters, J. Mech. Phys. Solids, 57, 87-108, (2009) · Zbl 1298.74011
[12] Knap, J.; Ortiz, M., An analysis of the quasicontinuum method, J. Mech. Phys. Solids, 49, 1899-1923, (2001) · Zbl 1002.74008
[13] Kochmann, D. M.; Venturini, G. N., A meshless quasicontinuum method based on local maximum-entropy interpolation, Modelling Simul. Mater. Sci. Eng., 22, (2014)
[14] Belytschko, T.; Xiao, S., Coupling methods for continuum model with molecular model, Int. J. Multiscale Comput. Eng., 1, (2003)
[15] Xiao, S.; Belytschko, T., A bridging domain method for coupling continua with molecular dynamics, Comput. Methods Appl. Mech. Engrg., 193, 1645-1669, (2004) · Zbl 1079.74509
[16] Xu, M.; Belytschko, T., Conservation properties of the bridging domain method for coupled molecular/continuum dynamics, Internat. J. Numer. Methods Engrg., 76, 278-294, (2008) · Zbl 1195.74303
[17] Wagner, G. J.; Liu, W. K., Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys., 190, 249-274, (2003) · Zbl 1169.74635
[18] Qian, D.; Wagner, G. J.; Liu, W. K., A multiscale projection method for the analysis of carbon nanotubes, Comput. Methods Appl. Mech. Engrg., 193, 1603-1632, (2004) · Zbl 1079.74595
[19] Park, H. S.; Karpov, E. G.; Liu, W. K.; Klein, P. A., The bridging scale for two-dimensional atomistic/continuum coupling, Phil. Mag., 85, 79-113, (2005)
[20] Shilkrot, L.; Miller, R.; Curtin, W., Coupled atomistic and discrete dislocation plasticity, Phys. Rev. Lett., 89, (2002) · Zbl 1151.74307
[21] Qu, S.; Shastry, V.; Curtin, W.; Miller, R., A finite-temperature dynamic coupled atomistic/discrete dislocation method, Modelling Simul. Mater. Sci. Eng., 13, 1101, (2005)
[22] Xiong, L.; Deng, Q.; Tucker, G.; McDowell, D. L.; Chen, Y., A concurrent scheme for passing dislocations from atomistic to continuum domains, Acta Mater., 60, 899-913, (2012)
[23] Xiong, L.; Deng, Q.; Tucker, G. J.; McDowell, D. L.; Chen, Y., Coarse-grained atomistic simulations of dislocations in al, ni and cu crystals, Int. J. Plast., 38, 86-101, (2012)
[24] Badia, S.; Bochev, P.; Fish, J.; Gunzburger, M.; Lehoucq, R.; Nuggehally, M.; Parks, M., A force-based blending model for atomistic-to-continuum coupling, Int. J. Multiscale Comput. Eng., 5, 387-406, (2007)
[25] Fish, J.; Nuggehally, M. A.; Shephard, M. S.; Picu, C. R.; Badia, S.; Parks, M. L.; Gunzburger, M., Concurrent atc coupling based on a blend of the continuum stress and the atomistic force, Comput. Methods Appl. Mech. Engrg., 196, 4548-4560, (2007) · Zbl 1173.74303
[26] Yang, Q.; Biyikli, E.; Zhang, P.; Tian, R.; To, A. C., Atom collocation method, Comput. Methods Appl. Mech. Engrg., 237, 67-77, (2012) · Zbl 1253.74127
[27] Park, H. S.; Klein, P. A.; Wagner, G. J., A surface Cauchy-Born model for nanoscale materials, Internat. J. Numer. Methods Engrg., 68, 1072-1095, (2006) · Zbl 1128.74005
[28] To, A. C.; Li, S., Perfectly matched multiscale simulations, Phys. Rev. B, 72, (2005)
[29] Ghoniem, N. M.; Busso, E. P.; Kioussis, N.; Huang, H., Multiscale modelling of nanomechanics and micromechanics: an overview, Phil. Mag., 83, 3475-3528, (2003)
[30] Miller, R. E.; Tadmor, E., A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods, Modelling Simul. Mater. Sci. Eng., 17, (2009)
[31] Broughton, J. Q.; Abraham, F. F.; Bernstein, N.; Kaxiras, E., Concurrent coupling of length scales: methodology and application, Phys. Rev. B, 60, 2391, (1999)
[32] Curtin, W. A.; Miller, R. E., Atomistic/continuum coupling in computational materials science, Modelling Simul. Mater. Sci. Eng., 11, R33, (2003)
[33] Fish, J., Bridging the scales in nano engineering and science, J. Nanoparticle Res., 8, 577-594, (2006)
[34] Liu, W. K.; Karpov, E.; Zhang, S.; Park, H., An introduction to computational nanomechanics and materials, Comput. Methods Appl. Mech. Engrg., 193, 1529-1578, (2004) · Zbl 1079.74506
[35] G. Lu, E. Kaxiras, An overview of multiscale simulations of materials, arXiv preprint cond-mat/0401073, 2004.
[36] Park, H. S.; Liu, W. K., An introduction and tutorial on multiple-scale analysis in solids, Comput. Methods Appl. Mech. Engrg., 193, 1733-1772, (2004) · Zbl 1079.74508
[37] Wernik, J.; Meguid, S. A., Coupling atomistics and continuum in solids: status, prospects, and challenges, Int. J. Mech. Mater. Des., 5, 79-110, (2009)
[38] Yang, Q.; Biyikli, E.; To, A. C., Multiresolution molecular mechanics: statics, Comput. Methods Appl. Mech. Engrg., (2013) · Zbl 1296.74006
[39] Biyikli, E.; Yang, Q.; To, A. C., Multiresolution molecular mechanics: dynamics, Comput. Methods Appl. Mech. Engrg., 274, 42-55, (2014) · Zbl 1296.74005
[40] Yang, Q.; Biyikli, E.; To, A. C., Multiresolution molecular mechanics: convergence and error structure analysis, Comput. Methods Appl. Mech. Engrg., 269, 20-45, (2014) · Zbl 1296.74132
[41] Yang, Q.; To, A. C., Multiresolution molecular mechanics: A unified and consistent framework for general finite element shape functions, Comput. Methods Appl. Mech. Engrg., (2014)
[42] Shenoy, V.; Miller, R.; Tadmor, E.; Rodney, D.; Phillips, R.; Ortiz, M., An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method, J. Mech. Phys. Solids, 47, 611-642, (1999) · Zbl 0982.74071
[43] Park, J. Y.; Im, S., Adaptive nonlocal quasicontinuum for deformations of curved crystalline structures, Phys. Rev. B, 77, (2008)
[44] Kwon, S.; Lee, Y.; Park, J. Y.; Sohn, D.; Lim, J. H.; Im, S., An efficient three-dimensional adaptive quasicontinuum method using variable-node elements, J. Comput. Phys., 228, 4789-4810, (2009) · Zbl 1169.82308
[45] Shimokawa, T.; Kinari, T.; Shintaku, S., Adaptive mesh refinement with elastic stiffness coefficients in the quasicontinuum model, J. Comput. Sci. Technol., 3, 408-416, (2009)
[46] Shan, W.; Nackenhorst, U., An adaptive FE-MD model coupling approach, Comput. Mech., 46, 577-596, (2010) · Zbl 1358.74067
[47] Moseley, P.; Oswald, J.; Belytschko, T., Adaptive atomistic-to-continuum modeling of propagating defects, Internat. J. Numer. Methods Engrg., 92, 835-856, (2012) · Zbl 1352.74412
[48] Moseley, P.; Oswald, J.; Belytschko, T., Adaptive atomistic-continuum modeling of defect interaction with the DEBDM, Int. J. Multiscale Comput. Eng., 11, (2013)
[49] Marenic, E.; Soric, J.; Ibrahimbegovic, A., Adaptive modelling in atomistic-to-continuum multiscale methods, J. Serb. Soc. Comput. Mech., 6, 169-198, (2012)
[50] Praprotnik, M.; Delle Site, L.; Kremer, K., Adaptive resolution molecular-dynamics simulation: changing the degrees of freedom on the fly, J. Chem. Phys., 123, (2005)
[51] Heyden, A.; Truhlar, D. G., Conservative algorithm for an adaptive change of resolution in mixed atomistic/coarse-grained multiscale simulations, J. Chem. Theory Comput., 4, 217-221, (2008)
[52] Tinsley Oden, J.; Prudhomme, S.; Romkes, A.; Bauman, P. T., Multiscale modeling of physical phenomena: adaptive control of models, SIAM J. Sci. Comput., 28, 2359-2389, (2006) · Zbl 1126.74006
[53] Budarapu, P. R.; Gracie, R.; Bordas, S. P.; Rabczuk, T., An adaptive multiscale method for quasi-static crack growth, Comput. Mech., 53, 1129-1148, (2014)
[54] Yang, S.-W.; Budarapu, P. R.; Mahapatra, D. R.; Bordas, S. P.; Zi, G.; Rabczuk, T., A meshless adaptive multiscale method for fracture, Comput. Mater. Sci., 96, 382-395, (2015)
[55] Tong, R.; Liu, G.; Liu, L.; Wu, L., Adaptive multiscale method for two-dimensional nanoscale adhesive contacts, Chin. J. Mech. Eng., 26, 606-612, (2013)
[56] Hankui, W.; Xiong, Z.; Xinming, Q., Adaptive smoothed molecular dynamics for multiscale modeling, Comput. Mater. Sci., 46, 713-715, (2009)
[57] Miller, R.; Tadmor, E.; Phillips, R.; Ortiz, M., Quasicontinuum simulation of fracture at the atomic scale, Modelling Simul. Mater. Sci. Eng., 6, 607, (1998)
[58] Berendsen, H. J.; Postma, J. P.M.; van Gunsteren, W. F.; DiNola, A.; Haak, J., Molecular dynamics with coupling to an external Bath, J. Chem. Phys., 81, 3684-3690, (1984)
[59] Kalé, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K., NAMD2: greater scalability for parallel molecular dynamics, J. Comput. Phys., 151, 283-312, (1999) · Zbl 0948.92004
[60] Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham, T. E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Comput. Phys. Comm., 91, 1-41, (1995) · Zbl 0886.92035
[61] Luan, B.; Hyun, S.; Molinari, J.; Bernstein, N.; Robbins, M. O., Multiscale modeling of two-dimensional contacts, Phys. Rev. E, 74, (2006)
[62] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1-19, (1995) · Zbl 0830.65120
[63] Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool, Modelling Simul. Mater. Sci. Eng., 18, (2010)
[64] Hull, D.; Bacon, D. J., Introduction to dislocations, (1984), Pergamon Press Oxford
[65] Kelchner, C. L.; Plimpton, S.; Hamilton, J., Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B, 58, 11085, (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.